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1. INTRODUCTION 

 
It is now generally accepted that several types of 
“risks” can be recognized for built facilities and 
environments: they are not limited to collapses 
and heavy damages but involve comfort and 
way of life (cf. e.g. Augusti et al., 2003). 
The most rational way of tackling such risks and 
their reduction is Performance-based Design 
PBD (or, better, Performance-based Engineer-
ing). 
This lecture will present and discuss briefly the 
general approach to PBD, and illustrate some 
examples of application. 
 

2. PERFORMANCE BASED DESIGN: 
GENERALITIES 

 
By definition, "Performance-Based Design" 
(PBD) requires the satisfaction of the relevant 
performance requirements with a sufficiently 
high probability throughout the lifetime of an 
engineering system.  
Indeed, design is always addressed to fulfil one 
or more performance objectives, but while up to 
a few years ago this aim was pursued on the 
basis of engineering experience and practice, 
PBD is a design philosophy specifically con-
structed in order to reach rationally and with a 
given reliability the chosen objectives. 
In this context, the “risk” is usually expressed in 
terms of the mean annual frequencies of exceed-
ing relevant limit states (LS). These mean an-
nual frequencies can be calculated by combining 
the site-specific hazard (in turn, measured by the 

mean annual frequency that the “action” exceeds 
a given intensity level) with information on the 
“exposure” (i.e. the probability that the action 
finds facilities to damage) and the “fragility” of 
the facility (the conditional probability of ex-
ceeding a limit state for a given intensity of the 
action).  
Such “complete” approach to risk evaluation 
(and consequent reduction) is however very 
complicated: on the one side the possible com-
bined effects of several actions (earthquakes, 
wind, voluntary and/or accidental human ac-
tions...) should be considered, with an enormous 
increase of statistics and mathematics; on the 
other side a number of non-technical questions 
rise, including comparisons and choices between 
incommensurable quantities such as casualties, 
economic losses, quality of life... 
These questions will be hinted in the lecture, but 
the main part will follow the most usual “techni-
cal” approach, i.e. focus on one facility subject 
to a specific action, and calculate its risk ne-
glecting the question of “exposure”; two exam-
ples, dealing with to two different types of ac-
tions, will be presented. 
 

3. PERFORMANCE BASED DESIGN: 
APPLICATIONS 

 
Under the above limitations the risk of a struc-
ture, identified with the mean annual frequency 
λ(LS) of exceeding a specified limit state, can be 
assessed by a convolution of two variables: the 
damage measure (DM), an appropriate  measure 
of the structural damage; and intensity measure 
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(IM), representing the characteristics of the ac-
tion at the site, and is usually expressed by a 
measure of the ground motion intensity.  
The total probability theorem allows to evaluate 
λ(LS) by the double integral, Eq.(1): 

     

λ( ) [ | ] [ | ] ( )= ⋅ ⋅∫∫LS G LS DM dG DM IM d IMλ  

where: G[LS|DM] is the conditional probability 
of exceeding the LS given DM (describing the 
failure or loss ); G[DM|IM] is the conditional 
probability of exceeding DM given IM (derived 
by structural analysis, and describing the de-
mand prediction for a given IM); λ(IM), also 
known as the hazard curve, is the mean annual 
frequency of occurrence of the action with an 
intensity higher than IM at the specific site 
(given by the hazard analysis). 
The choice of IM in Eq.(1) must be based on the 
requirements of sufficiency, efficiency, and 
hazard computability (Giovenale et al., 2003). 
A sufficient IM yields DM conditionally inde-
pendent, given IM, on other quantities that may 
affect the action; thus, it (i) permits an unbiased 
evaluation of λ(LS) by Eq.(1), (ii) simplifies the 
choice of the records to be used in nonlinear 
dynamic analyses (to take into account the re-
cord-to-record variability), (iii) legitimizes the 
operation of scaling the action input diagrams,, 
and (iv) allows decoupling hazard and structural 
analysis. 
An IM is (relatively) “more efficient” if it re-
sults in a “smaller” variability in the structural 
response for any given intensity. The variability 
is expressed by the dispersion in DM for any 
given value of IM. Since G[DM|IM] in Eq.(1) 
can be estimated by running nonlinear dynamic 
analyses, using a “more efficient” IM reduce the 
number of runs that are needed to estimate 
λ(LS) with the same confidence level. The dis-
persion in the structural response given IM will 
be assumed as a quantitative measure of the ef-
ficiency of that IM. 
Hazard computability of an IM is related to the 
effort required by the assessment of the hazard 
curve, λ(IM). 
Anyway, it is evident that sufficiency is an es-
sential property of an IM, and non-compliance 
with it may result in discarding that IM. Once 
the sufficiency of a candidate IM’s is estab-
lished, efficiency and hazard computability are 
two relative criteria that can be used to favour 
that candidate IM over the others. 
This procedure has been followed in great rig-
our in Augusti & Ciampoli, 2007, to evaluate 
the seismic risk of composite steel-concrete: 
particular attention has been devoted to an ap-
propriate choice of the “best” intensity measure 
among several “candidates”. This paper and its 

results will be illustrated in the lecture and sum-
marized in the final text. 
Sibilio and Ciampoli (2007) have tackled an-
other action and another risk: namely, the dis-
comfort of pedestrians on a bridge that oscillates 
due to wind actions.  
The examined footbridge is an actual structure 
whose aeroelastic characteristics are known. The 
relevant “limit state” is identified with a thresh-
old value of the wind-induced oscillations, in 
accord with the ISO 2631 standard, taking into 
account the suggested user perception and ac-
ceptance criteria. The buffeting and vortex 
shedding effects on the footbridge deck have 
been investigated through a 3D finite element 
non linear analysis in time domain, and the reli-
ability has been assessed by two numerical 
simulation techniques, i.e. Monte Carlo and 
Subset. Also these results will be illustrated in 
the lecture and summarized in the final text. 
 

4. CONCLUSIONS 
 

The general discussion and the example pre-
sented demonstrate that Performance-Based En-
gineering (or Performance-Based Design, PBD, 
as it is more usually called), although still in its 
infancy, can already be a powerful tool to esti-
mate rationally, and consequently reduce, risk of 
built facilities. 
Much remains to be done in this direction, e.g. 
to estimate risks of environments under real-
world combination of actions. These problems 
are much too often tackled in an emotional way: 
a scientific approach and an appropriate model-
ling can help decision-makers to tackle them in 
a rational way. 
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A mathematical program with equilibrium constraints (MPEC) is an optimisation problem that

includes variables, which satisfy an optimality or equilibrium condition, typically modelled via a
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with nonlinear data functions. The talk will cover illustrative applications, optimality conditions, and
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1. MOVING DOMAIN

The Courant metric in shape analysis (16) is ex-

tended here to classes of non smooth subsets in

D. The intrinsic tube analysis which is evoked

here is developped in (25), (24). The character-

istic function of Q is ζ ∈ L∞(I × D) verifying

ζ = ζ2 and ζ(t) = χΩt
where the measurable

set Ωt is defined in D up to a zero measure sub-

set. That theory can be extended to boundaries

with the approach of (2). In the second part we

adopt the eulerian modeling (5; 16; 8; 11) which

has been extended to non smooth vector fields in

(17; 25; 24; 8)... Making use of the transverse

field approach (8; 4; 18) we derive the euler

equation for the geodesic-tube which has been

presented in several image anlysis conferences

(”Shape Space” IMA , march 06, MIA06 Paris,

Obergurgl ...) with application developed with L.

Blanchard (26). The technic is inspired from (7).

Following (17), (23), we consider tubes which

are continuous with respect to the the L1(D)

topology and with time integrable perimeter, then

we introduce the set of characteristic functions

PD = { Ω ⊂ D, χΩ ∈ BV (D) }

and with

Hc = C0([0, 1], L1(D, {0, 1}))∩L1( 0, 1, BV (D) )

Associated with any subset Ω0 ∈ PD , the fam-

ily

OΩ0
= { Ω ∈ PD s.t.

∃ζ ∈ Hc, s.t. , ζ(0) = χΩ0
, ζ(1) = χΩ }

Associated with any two sets Ωi ∈ OΩ0
, the non

empty set of connecting tubes is :

T (Ω1, Ω2) = {ζ ∈ Hc, ζ(0) = χΩ1
,

ζ(1) = χΩ2
}

The set of jump lines of ζ(t) ∈ BV (D) is de-

noted by Γt. we consider the N +1 dimensional

perimeter

PI×D(Q) = ||∇t,xζ||M1(I×D)

=

∫ 1

0

∫

Γt

√

1 + v2 dΓt dt ≤

∫ 1

0
PD(Ωt) dt

+

∫ 1

0

∫

Γt

|v(t)| dΓt dt (in smooth case)

Consider also the fact that

<
∂

∂t
ζ, g >M(I×D)×C0

comp(I×D)

=

∫ 1

0

∫

Γt

v g dΓt dt =

∫ 1

0

∫

Ωt

div(g V )dxdt

As

∫ 1

0

∫

Γt

|v| dΓt dt = ||
∂

∂t
ζ||M1(I×D),

PD(Ωt) = ||∇xζ(t)||M1(D,RN )

Then we have :

||∇t,xζ||M1(I×D) ≤ ||
∂

∂t
ζ||M1(I×D)

+

∫ 1

0
||∇xζ(t)||M1(D,RN ) dt (1)

We shall consider the weak closure of such

smooth tubes ζ and verify that the estimate 1

still hold true on the closure:

Proposition 1.1 let ζn be a sequence of smooth

tubes such that

||
∂

∂t
ζn||M1(I×D)

+

∫ 1

0
||∇xζn(t)||M1(D,RN ) dt ≤ M (2)
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Then there exists a subsequence ( still denoted ζn

) and ζ such that ζn → ζ stongly in L1(I × D)

( so that ζ = ζ2 ) and we have :

||∇t,xζ||M1(I×D) ≤ lim inf ||
∂

∂t
ζn||M1(I×D)

+

∫ 1

0
||∇xζn(t)||M1(D,RN ) dt (3)

Corollary 1.2 Let ζ ∈ L1(I, BV (D)) ∩

W 1,1(I, M1(D)) then ζ ∈ C0(I, L1(D)) and

a.e. t ∈ I, ζ(t) = χΩt
with PD(Ωt) < ∞ and

t → PD(Ωt) is l.s.c.

The weak closures Hc,∗
p and Hc,∗

θ of Hk :

Hc,∗
p = {ζ = ζ2 ∈ Hc ∩H∗, s.t.

, ∃ζn ∈ Hk, ζn → ζ in L1(I × D) ,

∇t,xζn → ∇t,xζ (wealky in )M1(I × D),

with
∂

∂t
(ζn−ζ) → 0 weakly in LP (I, M1(D)) }

Hc,∗
θ = {ζ = ζ2 ∈ Hc ∩H∗, s.t.

∃ζn ∈ Hk, ζn → ζ in L1(I × D) ,

∇t,xζn → ∇t,xζ (wealky in )M1(I × D),

with a.e.t ∈ I, ||
∂

∂t
ζn(t)||M1(D) ≤ θ(t) }

2. A COMPLETE QUASI-METRIC SPACE

Hc,∗
p := { ζ ∈ Hc ∩ W 1,1(I, M1(D)),

∂

∂t
ζ ∈ Lp(I, M1(D)) } (4)

when the moving boundary is smooth :

||
∂

∂t
ζ||L1(I,M1(D,RN )) =

∫ 1

0
||v(t)||M1(∂Ωt)dt

We consider the variationnal problem

T c,∗
p (Ω1, Ω2) = { ζ ∈ T̄ (Ω1, Ω2) ∩Hc,∗

p } (5)

= { ζ ∈ Hc,∗
p s.t. ζ(0) = χΩ1

, ζ(1) = χΩ2
}

j = Inf{ζ∈T c,∗
p (Ω1,Ω2)} { ||

∂

∂t
ζ||L1(I,M1(D,RN ))

+ ||p||L1(I) } (6)

Proposition 2.1 Let p > 1, there exists (at least

one) tube ζ in T c,∗
p (Ω1, Ω2) ⊂ Hc,∗

p verifying the

minimum in the variational problems 6

The positive number j cannot be zero, j > 0, so

that j fails to be a distance on the family O∗
Ω0,p

= {Ω s.t.∃ ζ ∈ Hc,∗
p , χΩ = ζ(1), ζ(0) = χΩ0

}

Incorporate the perimeter integral as a constraint

in the family:

for given M > 0 consider O∗,PM

Ω0,p

= { Ω ∈ O∗
Ω0,p s.t. χΩ = ζ(1), ζ ∈ T c,∗(Ω0, Ω),

∫ 1

0
||∇ζ(t)||M1(D) dt ≤ M }

Notice that for two element Ωi ∈ O∗,pM
p there

exists connecting tubes verifying the perimeter

constraint:

Lemma 2.2 Let Ωi ∈ O∗
Ω0,p, i = 1, 2 . Then the

set T̄ (Ω1, Ω2) ∩ O∗
Ω0,p is non empty

Theorem 2.3 Let M > ||∇χΩ0
||M1(D,RN ).Let

p = 1, equipped with δ̄ the family O∗,pM ⊂ PD

is a metric space.

Let p > 1, equipped with δ̄ the family

O∗,pM ⊂ PD is a complete quasi-metric space,

in the sense that the triangle inequality is re-

placed by the following one :

δ̄p(Ω1, Ω3) ≤ 2p−1 { δ̄p(Ω1, Ω2) + δ̄p(Ω2, Ω3) }

(7)

In a full paper (27) we discuss the possibility to

introduce the curvature term p′ in the metric .

3. FULLY EULERIAN METRIC SPACE

As soon as the speed vector field V verifies some

BV properties (V ∈ L2(I, BV (D)N )) (24; 15),

there is a unique tube associated to V , then we do

have an application V → ζV and with such reg-

ularity on V we can revisit the complete metric

d being completely delivered of the non differ-

ential perimeter and curature terms that we were

obliged to introduce in order to apply the com-

pacity theorems. From the tube analysis we con-

sider several interesting choices for the spacial

regularity of the speed vector field (together with

its divergence field). Let

E1,1 = {V ∈ L1(I × D, RN ),

divV ∈ L1(D), V.nD, W−1.1(∂D },

and let E be by closed subspace in BV (D) ∩

E1,1 such that any element V ∈ E verifies the
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required assumptions. A first example is, when

working with prescribed volume for the moving

domain,

E0 = { V ∈ BV (D, RN ) ∩ E1,1,

s.t. divV = 0 a.e. (t, x) ∈ I × D }

V be a free divergence vector field with divV =

0, , V ∈ L1(I, E0)), where E = BV (D, RN )

or any closed subspace (for example E = {V ∈

H1
0 (D, RN ), s.t. divV = 0 } ) . An obvious

metric is to consider the set

V(Ω1, Ω2) = {V ∈ E1,1 s.t. V, divV ∈ Lp(I, E0),

s.t. ζ0 = χΩ1
, ζ(1) = χΩ2

}

δE0
(Ω1, Ω2) = InfV ∈V(Ω1,Ω2)

∫ 1

0
||V (t)||E0

dt

(8)

As V is divergence free the previous bounded-

ness assumption on the divergence are verified

and to each V a tube ζV is associated trough the

convection. Then we get the

Proposition 3.1 Let E be any subspace of

BV (D, RN )∩E1,1 such that any element V sat-

isfies assumptions of theorem 2,12 of (25), for

example E = E0 . Then equipped with δE the

family OE
Ω0

is metric space.

p > 1, dE0
(Ω1, Ω2) = InfV ∈V(Ω1,Ω2) ||V ||Lp(I,E0)

+ ||
∂

∂t
V ||L1(I,M1(D,RN ) (9)

Theorem 3.2 Let E be any subspace of

BV (D, RN ) ∩ E1,1, such that any element V

whose divergence satisfies assumptions of theo-

rem 2,12 of (25). Then equipped with dE the

family OE
Ω0

is a complete quasi- metric space.

3.1. Geodesic characterizarion via transverse

field Z

That metric can be improved as a complete

metric by adding the perimeter terms . Then

the transverse tube perturbation will applies.

In that setting we are concerned with vector

fileds Z(s, t, x) ∈ RN such that Z(s, 0, x) =

Z(s, 1, x) = 0 so that the extrimities of the per-

tubed tube are preserved. The previous study for

the transverse field implies that for given such a

vector filed Z, with divxZ(s, t, x) = 0 we get

the admissible perturbation of the field V in the

following form V + sW (s, t, x) with

W (s, t, x) =
∂

∂t
Z(s, t, x) + [Z, V ]

more precisely define the Lipschitz-continuous

connecting set

V1,∞(Ω1, Ω2) = { V ∈ L1(I, W 1,∞

∩E1,1, s.t. ζV ∈ T̄ (Ω1, Ω2) }

And the set of smooth transverse vector fields:

Z = { Z(t, x) ∈ C∞
comp(I × D, RN ) }

( Notice that such Z verifies Z(0, .) = Z(1, .) =

0 on D )

Proposition 3.3 Let V ∈ V(Ω1, Ω2) and

Z(t, x) ∈ Z . The Transformation

T = Ts(Z)oTt(V ) maps Ωt(V ) onto Ωs
t :=

Ts(Z)(Ωt(V )) so that

∀s, ∀Z, V s(t, x) =
∂

∂t
T o T −1

= (
∂

∂t
Ts(Z(t))+DTs(Z(t)).V (t) )oTs(Z(t))−1

∈ V1,∞(Ω1, Ω2)

Lemma 3.4

∂

∂s
V s(t, x)|s=0 =

∂

∂t
Z(t)+ [Z(t), V (t)] (10)

Corollary 3.5 Consider a functional J (V ) =

j(ζV ) and let V̄ be a minimizing element of J

on V(Ω1, Ω2) then we have

∀Z ∈ Z,
∂

∂s
J (V̄ s)s=0

= J ′(V̄ ; (
∂

∂s
V s)s=0)

= J ′(V̄ ;
∂

∂t
Z(t) + [Z(t), V (t)] ) ≥ 0 (11)

That variational principle extends to vector field

V ∈ E for which the flow mapping Tt(V ) is

poorly defined. The element ζV ∈ Hc is uniquely

defined. For any Z ∈ Z the perturbed ζs
V :=

ζV oTs(Z)−1 ∈ T̄ (Ω1, Ω2) on the other hand the

following result is easily verified
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Proposition 3.6 ζs
V = ζV s with

V s(t, .) := −DT−1
s (−Z(t)).(V (t)oTs(Z(t))−1)

−
∂

∂t
Ts(−Z(t)) )

In other words:

∂

∂t
ζ + ∇ζ.V = 0 implies

∂

∂t
(ζoTs(Z(t))−1) +∇(ζoTs(Z(t))−1).V s = 0

It can also be verified that the expression 10

for the derivative of the field still holds true

so that the variational principle (11) is valid for

any functional J minimized over the lipschitzian

connecting family V1,∞(Ω1, Ω2). And more gen-

erally, without assuming V in E we have :

Proposition 3.7 Let (ζ, V ) ∈ T p,q(Ω1, Ω2), then

for all s > 0 and Z ∈ Z we have :

(ζoTs(Z)−1, V s) ∈ T p,q(Ω1, Ω2)

In order to get a differentiable metric we could

consider

d̃(Ω1, Ω2) = InfV ∈V(Ω1,Ω2)

∫ 1

0
( ||V (t)||H1

0
∩E0

+ ||
∂

∂t
V ||L2(D) ) dt

equipped with d̃, OΩ0
would be complete met-

ric space but d̃ fails to be a metric because of

the triangle axiom The advantage is that now the

associated functional is differentiable with repect

to V then we can apply the previous variational

principle with transverse vector field Z. Let V̄ be

a minimizer in V(Ω1, Ω2) for d̃(Ω1, Ω2). Then

∀Z ∈ Z we have

∫ 1

0
{ ||V (t)||−1 < V (t), Zt + [Z, V ] >

+|V ′(t)|−1 ((V ′(t) (Zt + Z, V )′ )) }dt = 0

Where <, > is the H1
0 (D, RN ) inner product

while ((, )) is the L2(D, RN ) one. In order to

recover a differentiable complete metric we in-

troduce again the constraint on the perimeter as

in the begining and set

δH1(Ω1, Ω2) = InfV ∈V(Ω1,Ω2)

∫ 1

0
||V (t)||H1

0
∩E0

dt (12)

The optimality condition is :∀Z ∈ Z

s.t.

∫ 1

0

∫

Γt

H(t) < Z(t), nt > dΓt dt = 0,

∫ 1

0
||V (t)||−1 < V (t), Zt + [Z, V ] > dt = 0

4. QUASI-METRIC BY LEVEL SET FOR-

MULATION FOR APPLICATIONS

Let p > 1 and Ωi, i = 1, 2 be two arbitrary

mesurable subsets in D. Let

K(Ω1, Ω2) = {φ ∈ L2(I, H1(D))∩W 1,1(I, L2(D)),

∂

∂t
φ ∈ Lp(I, L2(D)),

Ω1 = {Φ(0, .) > 0}, Ω2 = {Φ(1, .) > 0 }

Notice that K(Ω1, Ω2) ⊂ C0(Ī , L2(D)), we set

dLS,p = (Ω1, Ω2) := Inf{φ∈K(Ω1,Ω2)}

∫ 1

0
(α ||φ(t)||2H1(D) + ||

∂

∂t
φ(t)||p

L2(D)
) dt

Theorem 4.1 Let 1 < p ≤ 2, equipped with

dLS,p the family of mesurable subsets in D is

a complete quasi-metric space.

5. EULER EQUATION FOR GEODESICS

∃c(t), P s.t.
∂

∂t
(||V (t)||p−2 V (t))

+ ||V (t)||p−2 ( DV (t).V + D∗V.V (t) )

= ∇P + c χΓt
divΓt

(nt) nt.

That is,

(p − 2)||V ||p−4((V,
∂

∂t
V ))V

+ ||V (t)||p−2 (
∂

∂t
V + DV (t).V + D∗V.V (t) )

= c χΓt
divΓt

(nt) nt, (13)

which can be written as ( with the notations V̄ =

||V ||−1 V , Π = P − 1/2|V |2 ) :

divV = 0,

∂

∂t
V + (p − 2)((

∂

∂t
V, V̄ )) V̄

= DV.V = ∇Π+c(t)||V ||2−p χΓt
divΓt

(nt) nt

(14)

7



REFERENCES

[1] Delfour, Michel C. and Zolésio, Jean-Paul Ori-
ented distance function and its evolution equation
for initial sets with thin boundary. SIAM J. Con-
trol Optim. 42 (2004), no. 6, 2286–2304

[2] Delfour, Michel C. and Zolésio, Jean-Paul
Boundary Evolution J. Evolution Equation
4(1):29-52, 2006.

[3] M. Cuer and J.P. Zolésio Control of singular
problem via differentiation of a min-max. Sys-
tems Control Lett. 11 (1988), no. 2, 151–158.

[4] R. Dziri and J.P. Zolésio. Dynamical Shape Con-
trol in Non-cylindrical Navier-Stokes Equations.
J. convex analysis, vol. 6, 2, 293-318, 1999.

[5] J. Sokolowski and J.P. Zolésio. Introduction to
shape optimization, sci, 16, Springer verlag, Hei-
delberg, N.Y., 1991

[6] B. Kawohl, O. Pironneau, L. Tartar, J.P. Zolésio.
Optimal Shape Design, Lecture Notes in Mathe-
matical, 1740„ Springer verlag, Heidelberg, N.Y.,
1998 .

[7] J.P. Zolésio. Variational Principle in the Euler
Flow. In G. Leugering, editor, Proceedings of the
IFIP-WG7.2 conference, Chemnitz, volume 133
of Int. Series of Num. Math., 1999.

[8] J.P. Zolésio. Shape Differential with Non Smooth
Field. In Computational Methods for Optimal
Design and Control. J. Borggard, j. Burns,
E. Cliff and S. Schreck eds., volume 24 of
Progress in Systems and Control Theory, pp.426-
460, Birkhauser, 1998.

[9] Weak set evolution and variational applications
in Shape optimization and optimal design, lec-
ture notes in pure and applied mathematics, vol.
216,pp.415-442, Marcel Dekker,N.Y., 2001.

[10] Delfour, M.-C. and Zolésio, J.-P., Structure of
shape derivatives for non smooth domains, Jour-
nal of Functional Analysis,1992,104

[11] Cannarsa, C and Da Prato, G and Zolésio, J.-P.,
The damped wave equation in a moving domain,
Journal of Differential Equations,1990,85,1-16.

[12] Delfour, M. C. and Zolésio, J.-P., Shape anal-
ysis via oriented distance functions, J. Funct.
Anal.,1994,123,1-56

[13] Dziri, R. and Zolésio, J.-P., Dynamical shape
control in non-cylindrical hydrodynamics, In-
verse Problem, 1999,15,1,113-122.

[14] G. Da prato and Zolésio, J.-P., Dynamical Pro-
gramming for non Cylindrical Parabolic Equation
, Sys. Control Lett.,11,1988

[15] L. Ambrosio, Lecture notes on optimal trans-
port problems. Mathematical aspects of evolving
interfaces (Funchal, 2000), 1–52, Lecture Notes
in Math., 1812, Springer, Berlin, 2003. 49Q20
(49-02)

[16] M. Delfour and J.P. Zolésio Shape and Geome-
try Advances in Design and Control,04, SIAM,
2001

[17] J.P. Zolésio Set Weak Evolution and
Transverse Field , Variational Applica-
tions and Shape Differential Equation IN-
RIA report RR-464 , 2002.(http://www-
sop.inria.fr/rapports/sophia/RR-464)

[18] M. Moubachir and J.P. Zolésio, Moving Shape
Analysis and Control: application to fluid struc-
ture interaction. Pure and Applied Mathematics
series, CRC, 2006.

[19] Michel C. Delfour and Jean-Paul Zolésio. Struc-
ture of shape derivatives for non smooth domains.
Journal of Functional Analysis, 104, 1992.

[20] Michel C. Delfour and Jean-Paul Zolésio. Shape
analysis via oriented distance functions. Journal
of Functional Analysis, 123, 1994.

[21] Fabrice R. Desaint and Jean-Paul Zolésio. Man-
ifold derivative in the laplace-beltrami equation.
Journal of Functionnal Analysis, 151(1): 234,
269, 1997.

[22] Jean-Paul Zolésio. Introduction to shape op-
timization and free boundary problems. In
Michel C. Delfour, editor, Shape Optimization
and Free Boundaries, volume 380 of NATO ASI,
Series C: Mathematical and Physical Sciences,
pages 397, 457, 1992.

[23] Jean-Paul Zolésio. Shape Topology by Tube
Geodesic. In Information Processing: Re-
cent Mathematical Advances in Optimization and
Control. Presses de l’Ecole des Mines de Paris
, pages 185-204 , 2004.

[24] Jean-Paul Zolésio. Control of Moving Domains,
Shape Stabilization and Variational Tube Formu-
lations. in ” ” In . G. Leugering ed. International
Series of Numerical Mathematics, Birkhauser
,vol. 155, pages 1-50 , 2007.

[25] Jean-Paul Zolésio. Optimal Tubes: Geodesic
metric, Euler Flow and Moving Domain. In Free
And Moving Boundaries: Analysis, Simulation
And Control . Francis & Taylor/CRC , Lecture
Notes in Pure and Applied Mathematics, 252, p.
1-36 , Boca Raton, 2007.

[26] Louis Blanchard and Jean-Paul Zolésio. In these
proceedings

[27] Shape Metrics by Tubes Geodesic, submitted.

8



Mathematical challenges and fast solution methods in aerodynamic
shape optimization

Volker Schulz

Department of Mathematics, University of Trier, 54296 Trier, Germany

Keywords: Aerodynamic shape optimization, one-shot optimization, approximate reduced SQP

1. AERODYNAMIC SHAPE OP-

TIMIZATION

Aerodynamic shape optimization is a rewarding

field for numerical analysis, since it poses sev-

eral challenges due to the complexity of the sub-

problems involved and because efficient numeri-

cal solution methods have a high economical im-

pact. This is particularly evident in the collabo-

rative effort MEGADESIGN (2003-2007, funded

by BMWi), whithin which most of the results

presented here have been achieved. The focus

of our research lies in the generation of fast nu-

merical methods for optimal shapes of parts of

the geometry of civil aircrafts. The objective

for the optimization is the minimization of aero-

dynamic drag, because this immediately reduces

fuel consumption. The aerodynamic models are

represented in the form of complex flow sim-

ulators which are provided by our application

partner. They involve costly iterative processes.

The main challenge in aerodynamic shape opti-

mization is to avoid wrapping another optimiza-

tion loop around the simulation iterations, but

rather to perform optimization steps already dur-

ing iterative process of the forward simulation

tool. Thus, this methodolgy is frequently called

a ”one-shot-optimization” method.

2. A NOVEL ALGORITHMIC

TEMPLATE

From an abstract point of view, we consider op-

timization problems of the form

min f(u, q) (1)

s.t. c(u, q) = 0 ∃c−1
u (2)

where u denotes the aerodynamic flow state vari-

ables, to be solved for in the flow equation. The

Fig. 1. Three part wing in high lift configuration

letter q denotes a finite dimensional parameteri-

zation of the shape that we investigate. The scalar

valued function f(u, q) denotes the objective of

the optimization, i.e., here the aerodynamic drag

resulting from the shape chosen. With this ab-

stract problem formulation, we observe that the

problem under investigation falls into the class

PDE constrained optimization problems, which

are of major interest in several international re-

search programs.

By use of the Lagrangian function

L(u, q, λ) = f(u, q) − λ∗c(u, q)

we can formulate our basic one-shot algorithm

in the form

λk+1 = λk
− (A∗)−1

∇uL(uk, qk, λk)

qk+1 = qk
− S−1

A ∇qL(uk, qk, λk+1)

uk+1 = uk
− A−1c(uk, qk+1, λk+1)

where A ≈ ∂c/∂u and SA is an approximation

to what we call the ”consistent” reduced Hessian.

This algorithm is highly modular but nevertheless

iterates simulateously over all variables: state,

design and adjoints.
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3. MAJOR ISSUES OF THE TALK

The algorithm sketched above can be interpreted

as an approximate variant of reduced SQP meth-

ods. By use of this interpretation, it is easily

generalizable to completely different application

areas outside of aerodynamic shape optimization

with similar proble characteristics. These charac-

teristics are that one wants to stick to an a-priorily

implemented system solver and on the other hand

has an adjoint solver at hand. At the core of the

numerical analysis of this algorithm lie conver-

gence results. These have been achieved so far

for linear-quadratic model problems. We show

the essential ideas of these convergence proofs.

In addition to the problem formulation (1, 2),

one has to treat state constraints modeling the

lift requirement for the airplane and also a re-

quired pitching moment. Since these are scalar

valued constraints, they can be included within

the algorithmic framework by adding further ad-

joint equations, which are solved ”on the fly” as

well. Enhancements of the convergence theory

justifying this constraint treatment are presented,

too. In a practical environment, practical issues

of the implementation play a major role for the

success of the resulting methods. These issues

will be discussed together with several numerical

results, e.g., for the three part wing depicted in

Figure 1.

The success of the one-shot methods de-

scribed within the talk has stimulated research

towards further aspects: substitution of a fixed

shape parameterization by a fine resolution based

on the flow grid, incorporation of multigrid ideas

in the algorithmic framework, the efficient treat-

ment of uncertainties in the industrial environ-

ment, etc. Several of these aspects and recent

research results for them will be discussed, as

well.

4. CONCLUSIONS

A major part of the talk will be devoted to sum-

marizing the research results presented in the

publications (Gherman et al., 2005; Gherman,

2007; Hazra et al., 2004, 2006; Ito et al., 2006;

Kroll et.al, 2004; Schulz, 1998, 2004) and so far

unpublished results based on them.
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Discrete Mathematics was born when the 
first concepts of mathematics were 
invented. The modern meaning of the 
term Discrete Mathematics began to take 
shape in the fifties of the 20th century 
and has evolved over the last decades. 
Today it includes (roughly): classical 
combinatorics, graph theory, 
combinatorial optimization, integer 
programming, matroid theory, coding 
theory, and even some branches of 
geometry, algebra, and number theory. 
Discrete Mathematics overlaps 
significantly with Theoretical Computer 
Science, in particular in the theory of 
algorithms. 
 
Driven by the explosive growth of 
computing power and by numerous 
applications, Discrete Mathematics has 
experienced tremendous progress in the 
last 50 years - both in theory and in its 
use in practice. There is no way to cover 
all the areas and all success stories. I will 
focus on a few highlights (of my choice) 
and will try to show the advances that 
have been achieved along these 
examples. 
 
Success in theory is typically marked by 
the proof of important theorems. The 

max flow-min cut theorem, the 
characterization of totally unimodular 
matrices, the matroid intersection 
theorem, the 4-color theorem, and the 
perfect graph theorem are five of many 
examples of a rich harvest of this kind 
that I will mention. 
 
Progress is often fueled by new notions 
and theories providing suitable tools and 
concepts for the understanding of 
unexplained phenomena. Prime examples 
here are the concept of NP- and other 
types of completeness, general 
complexity theory, and the theory of 
random graphs, all developed in the last 
50 years. 
 
Our daily life is full of (usually 
unnoticed) contacts with Discrete 
Mathematics. Whether we produce a car, 
ride a city bus, fly in an airplane, find a 
route with a car navigation system, order 
a book, use a phone, or withdraw money 
from an ATM, Discrete Mathematics is 
involved in some fundamental and often 
important way. I will present some 
breakthroughs in the algorithmic solution 
technology focusing on large-scale real-
world examples of this kind. 
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1. OPTIMAL CONTROL PROB-

LEMS WITH CONTROL AP-

PEARING LINEARLY

We study optimal control problems of the fol-

lowing form: determine a piecewise continuous

(measurable) control u : [0, tf ] → IRm and a

state trajectory x : [0, tf ] → IRn that minimize

the cost functional of Mayer type,

J(x, u, tf ) := g(x(tf ), tf ),

subject to the dynamics, boundary conditions and

control-state constraints

ẋ(t) = f(x(t), u(t), t), 0 ≤ t ≤ tf ,

ϕ(x(0), x(tf )) = 0,

C(x(t), u(t)) ≤ 0, 0 ≤ t ≤ tf .

The augmented Hamiltonian is given by

H(x, u, λ, t) = λf(x, u, t) + µC(x, u),

where λ ∈ IRn denotes the adjoint variable and

µ is the multiplier for the control-state constraint.

For this control problem, second–order suffi-

cient conditions, sensitivity analysis and real–

time control techniques have been extensively

studied in the literature under the assumption

that the strict Legendre condition Huu[t] ≥

cIm , c > 0, holds; c.f., e.g., Dontchev, Hager

[3], Malanowski, Maurer [7], Büskens, Maurer

[2], Maurer, Augustin [9].

The situation is different for optimal control

problems where all control components appear

linearly. In this case, the strict Legendre con-

ditions is violated. The dynamics then has the

form

ẋ(t) = f1(x(t), t) + f2(x(t))u(t),

where f1(x, t) is a n–vector and f2(x, t) is a

n × m–matrix, and the control constraints are

assumed to be simple box constraints

ui,min ≤ ui(t) ≤ ui,max , i = 1, ...,m.

The switching function is defined by

σ(x, λ, t) = λf2(x, t),

σ[t] = σ(x(t)), λ(t)), t) = (σ1[t], ..., σm[t]).

Then the optimal control which minimizes the

Hamiltonian is characterized by

ui(t) =

⎧

⎨

⎩

ui,min, if σi[t] > 0

ui,max, if σi[t] < 0

singular, if σi[t] = 0

⎫

⎬

⎭

for i = 1, ...,m. If the switching function σi[t]

has only isolated zeros in [0, tf ], then ui(t) is

called a bang–bang control component.

2. BANG–BANG CONTROL

Assume that every component ui(t) of the opti-

mal control is bang–bang and that there are only

finitely many switching times which are ordered

as 0 < t1 < ... < tk < ... < ts < tf . Such a

bang-bang control can be computed by solving an

induced optimization problem, where the switch-

ing times tk, (k = 1, ..., s) are taken as optimiza-

tion variables. It has been shown in Agrachev,

Stefani, Zezza [1] and Osmolovskii, Maurer [11–

13] that second order sufficient conditions (SSC)

hold for the bang-bang control problem provided

that SSC hold for the induced optimization prob-

lem and, moreover, the switching function satis-

fies the so–called strict bang–bang property. A

related type of sufficient condition has been de-

rived in Ledzewicz, Schättler [6].
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An interesting byproduct of the optimization

approach is the fact that the well–known sen-

sitivity results for finite–dimensional optimiza-

tion problems apply to bang–bang control prob-

lems, since the strict bang–bang property is sta-

ble with respect to perturbations. Numerical

time–scaling techniques for verifying SSC and

computing parametric sensitivity derivatives have

been developed in Maurer et al. [9]. In this talk,

we present two practical examples illustrating the

numerical techniques and the sufficiency test:

time–optimal control of a van der Pol oscillator

[11] and control of a semiconductor laser [4].

3. SINGULAR CONTROL

For singular control problems, sufficient otpi-

mality conditions have been obtained only in

special cases, e.g., for totally singular controls.

Here, we concentrate on the case where the sin-

gular control can be obtained in feedback form

u = using(x, t). This property holds in many

practical examples. To compute a control that is

a combination of bang–bang and singular arcs,

we solve an induced optimization problem, where

switching times of bang–bang arcs and junction

times with singular arcs are optimized simultane-

ously. This numerical approach is illustrated on

three examples: (a) van der Pol oscillator [14] (b)

Goddard problem [8,14], (c) fedbatch fermenta-

tion problem [5,14].
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Nonlinear programming (NLP) has been a key

enabling tool for model-based decision-making

in the chemical industry for over 50 years. Opti-

mization is frequently applied in numerous ar-

eas of chemical engineering including the de-

velopment of process models from experimen-

tal data, design of process flowsheets and equip-

ment, planning and scheduling of chemical pro-

cess operations, and the analysis of chemical pro-

cesses under uncertainty and adverse conditions.

These off-line tasks frequently require the solu-

tion of NLPs formulated with detailed, lareg-

scale process models.

More recently, these tasks are complemented

by time-critical, on-line optimization problems

for challenging process applications. Here NLPs

formulated with differential-algebraic equation

(DAE) process models are solved to enforce de-

sirable process behavior. The use of nonlinear

dynamic models has key advantages; it captures

process behavior well over a wide range of condi-

tions, can be fitted to process data over time and

leads to models that are compatible with off-line

optimization models. However, the challenge re-

mains whether underlying optimization models

can be solved sufficiently quickly with on-line

DAE process models.

Figure 1 depicts the interplay of tasks for on-

line optimization. Here the plant has manipu-

lated variables and disturbances as inputs, with

the former determined by the Control block. In

addition, output measurements from the plant are

used by the Estimator block to infer the state of

the process model as well as unmeasured dis-

turbances. Challenging process applications of-

ten require actions for the Control and Estimator

blocks to be determined by solving dynamic op-

timization problems over moving time horizons.

Fig. 1. Block Diagram of Model-Based Control Struc-

tures

As process measurements are updated in the pro-

cess every few minutes or even every few sec-

onds, both the control and estimation problems

need to be solved quickly.

Nonlinear model predictive control (NMPC)

and Moving Horizon Estimation (MHE) are well-

developed NLP formulations to deal with the

control and estimation tasks in Figure 1. Here we

present the formulations of these dynamic opti-

mization problems based on a simultaneous col-

location (or direct transcription) approach. This

approach is especially useful as it can deal with

unstable systems and exploits sparsity and struc-

ture of DAE process models. On the other hand,

the discretization of all state and manipulated

variables over time leads to large NLPs and re-

quires the application of large scale NLP solvers.

For this task we discuss a recently developed

barrier, full space NLP solver called IPOPT (4).

In particular, this approach solves the KKT sys-

tem with a Newton-based barrier method that

uses a filter line search for global convergence.

The algorithm has been embodied into an open

source, object oriented code that compares well

with competing NLP approaches. Moreover, we
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discuss an extension of this code to deal with ex-

ploitation of the structure of process models. In

addition, we discuss recent implementations of

NLP sensitivity analysis arising from the formu-

lation of parametric NLPs. Based on well-known

properties of barrier methods (3), the sensitiv-

ity of the optimal solution can be computed with

only a simple back-solve of a pre-factorized KKT

matrix

We show that these IPOPT features are espe-

cially important for time-critical, on-line calcula-

tions. Moreover, they can address the challenge

of process models increasing in size and com-

plexity while still requiring requires frequent on-

line updating for the plant. As a result, fast so-

lution of these NLP subproblems, shown in (2),

may not be sufficient to avoid computational de-

lays (with resulting loss of performance) in the

control loop. Instead, we apply the recently de-

veloped concept of real-time iteration (1) and

discuss its adaptation to barrier algorithms that

exploit properties of NLP sensitivity. Here both

the NMPC and MHE subproblems can be solved

in background between sampling times. Based

on these solutions of these parametric NLPs, new

process measurements can be used to update the

NLP solution; this update is the only on-line cal-

culation.

We discuss the adaptation of both MHE and

NMPC problems to real-time iteration (5; 6).

Here on-line calculations are effected through

simple backsolves of a pre-factorized KKT sys-

tem, assisted by a Schur complement factoriza-

tion of augmented systems that characterize the

perturbed NLP solution. This approach leads

to tremendous reductions in on-line optimization

calculations and will be demonstrated on a real-

world example.

Finally, a number of areas are discussed for

future work. These deal with the extension of

this approach to larger, integrated subsystems and

the treatment hybrid systems that include NLPs

formulated with complementarity constraints. In

addition we will expand the scope of on-line dy-

namic models so that they are more tightly in-

tegrated with economic and planning decisions

made off-line.
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”Dynamic Optimization of the Tennessee East-
man Process Using the OptControlCentre,”
Computers and Chemical Engineering, 27, 11
pp 1513-1531 (2003)

[3] A. V. Fiacco, Introduction to Sensitivity and
Stability Analysis in Nonlinear Programming,
Academic Press, New York, 1983.
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1. INTRODUCTION
With  the  recent  advanced  development  of 
computer  technology,  it  has  been  widely 
recognized  that  optimization  can  take  an 
important  role  in  accomplishing  an  economic 
and  efficient  process  for  various  engineering 
problems.   It  can  provide  us  with  useful 
information  for  decision-making.   From  the 
practical points of view, the optimization should 
be flexible and intellectual  so as to solve real 
problems with many difficulties such as vague 
and uncertain objective function and constraints 

In  this  paper,  an  attempt  is  made  to 
develop  some  efficient  optimization 
methods  by  introducing  the  concepts  of 
evolutionary  computing.   Several 
application  examples  are  presented  to 
demonstrate  the  applicability  of  the 
proposed methods.

2. EVOLUTIONARY COMPUTING
Evolutionary computing has been paid attention 
as  a  promising  optimization  tool  in  various 
fields because of its general possibility to reach 
the  optimal  solution,  simplicity  in  theory,  and 
easiness  of  programming.   Among  many 
evolutionary  computing  techniques,  Genetic 
Algorithm (GA), Immune Algorithm (IA), and 

Particle Swarm Optimization (PSO) have been 
successfully  applied  in  the  field  of  structural 
engineering.  GA is  an evolutionary computing 
technique, in which candidates of solutions are 
mapped  into  GA  space  by  encoding.   The 
following  steps  are  employed  to  obtain  the 
optimal solutions: a) initialization, b) crossover, 
c)  mutation,  d)  natural  selection  and  e) 
reproduction.   Individuals,  which  are  solution 
candidates,  are  initially  generated  at  random. 
Then,  steps  b,  c,  d,  and  e  are  repeatedly 
implemented until  the  termination condition is 
fulfilled.  Each individual has a fitness value to 
the environment.  The environment corresponds 
to  the  problem  space  and  the  fitness  value 
corresponds to the evaluation value of objective 
function. 

Immune  Algorithm (IA)  is a  kind  of 
optimal  solution  search  algorithms  and  is 
said to allow the diversity of solutions to be 
retained  and  multiple  quasi-optimal 
solutions  to  be  obtained.   It  is  considered 
that  IA  is  suitable  for  practical  design 
problems because  of  these  characteristics, 
which  allow  two  or  more  different  quasi-
optimal  solutions  rather  than  a  single 
optimal solution to be obtained to a problem 
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which  is  difficult  to  evaluate  in  a 
standardized  manner.   Consequently,  an 
engineer can select an appropriate candidate 
from  them  based  on  their  subjective 
judgement and preferences.
  

3. OPTIMAL RESTORATION SCHEDULE 
FOR EARTHQUAKE DISASTER

Nowadays, our life is realized based upon the 
daily  use  of  various  lifeline  systems.   Those 
lifeline systems form the complicated network 
whose functions are mutually interrelated.  All 
the lifeline systems have not been designed to 
protect  all  natural  hazards.   Moreover,  the 
newest  design  theory  can  not  guarantee  the 
absolute safety due to the economic constraints. 
Therefore, it is necessary to develop a synthetic 
disaster  prevention  program  based  on  the 
recognition  that  lifeline  systems  may 
unavoidably suffer when big earthquakes occur.

The  main  purpose  of  this  research  is  the 
early  restoration  of  lifeline  systems  after  the 
earthquake  disasters.   Here,  two issues  are 
focused  on,  the  first  of  which  is  such  an 
allocation  problem  that  which  groups  will 
restore which disaster places, and the second is 
such  a  scheduling  problem  what  order  is  the 
best  for the restoration.  In order to solve the 
three problems  simultaneously,  Genetic 
Algorithm (GA) is applied, because it has been 
proven  to  be  very  powerful  in  solving 
combinatorial  problems.   However,  road 
networks  after  earthquake  disaster  have an 
uncertain environment as the secondary disaster 
by  aftershock.  Therefore,  the  restoring  works 
are not progressing on schedule.  In this study, 
an  attempt  is  made  to  develop  an  efficient 
disaster restoration method by using Improved 
GA.   A  numerical  example  is  presented  to 
compare the proposed method and the ordinal 
method.

4. OPTIMAL MAINTENANCE PLANNING 
OF BRIDGE STRUCTURES

The purpose of this study is to develop a method 
of  optimal  maintenance  planning  for  many 
bridges  based  on  Life-Cycle  Cost  (LCC)  by 
introducing the technique of GA.

Recently,  maintenance  work  is  becoming 
more and more important, because the number 
of  structures  requiring  repair  or  replacement 
increases in the coming ten years, in Japan.  In 
order  to  establish  a  rational  and  economical 
maintenance program, the concept of LCC has 
gained  great  attention,  which  minimizes  the 
total cost of whole lives of structures.

In  this  paper,  an  attempt  is  made  to 
minimize  LCC  for  many  concrete  bridge 
structures.  The  concrete  bridges  are 
deteriorating due to the corrosion of reinforcing 
bars and neutralization of concrete.  Then, it is 

necessary  to  achieve  an  optimal  maintenance 
plan that can provide appropriate methods and 
times of repairing or replacement.  However, the 
optimal maintenance problem is very difficult to 
solve,  because  it  is  one  of  combinatorial 
problems  with  discrete  design  variables  and 
discontinuous objective functions.  Furthermore, 
the  problem  may  become  tougher,  when  it 
becomes  larger  and  more  complex.   In  this 
study, an attempt is made to develop an efficient 
bridge maintenance  method by using Improved 
GA.   A  numerical  example  is  presented  to 
compare the  proposed method and the ordinal 
method.

5. AESTHETIC DESIGN OF BRIDGE 
STRUCTURES

In the design of bridge structures, it is becoming 
important  to  consider  the  aesthetic  design 
factors.   In  this  paper,  an attempt  is  made to 
develop  a  decision-support  system  for  the 
aesthetic  design  of  bridge  handrails.   The 
colours,  upper components,  lower components 
and columns are employed as design items as 
well as the configuration of bridge, the colours 
of  other  bridge  components  and  the  harmony 
with the surrounding environment.  The present 
system consists of the evaluation system using 
neural  network  and  the  optimization  system 
based upon  Immune  Algorithm (IA).   Several 
numerical  examples  are  presented  to 
demonstrate  the  efficiency  of  the  proposed 
system.  Computer Graphics (CG) is used for 
visual examination of each alternative.

6. CONCLUSIONS
n  this  study,  attempts were made  to  develop 
some new searching  methods for  optimization 
problems  of  structural  engineering.  The 
optimization problems in  real  life  are very 
difficult  to  solve,  because they  have objective 
function  and  constraint  condition  with 
vagueness and uncertainty.  By comparing the 
proposed methods with the usual method, it was 
proven that  the  proposed  methods can  reduce 
the  computation  time and  improve  the 
convergence of searching procedure.
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Modern variational analysis provides a so-

phisticated unification of convex and smooth op-

timization theory, achieving striking generality

but at the expense of possible pathology. The

general theory must handle highly irregular and

oscillatory functions and sets, and yet, on the

other hand, a rich family of concrete instances

involve no such pathology. In particular, from a

variety of variational-analytic perspectives, semi-

algebraic sets—finite unions of sets defined by

finitely many polynomial inequalities—are well

behaved.

In joint work with J. Bolte, A. Daniilidis,

A. Ioffe, C.H.J. Pang, and M. Shiota, the au-

thor illustrates a variety of situations where semi-

algebraic techniques resolve variational-analytic

challenges. Most of the following examples ex-

tend to sets and functions that are “subanalytic”

or, more generally, “tame”.

We begin with an algorithmic application.

Consider a locally Lipschitz function F :Rn →
Rn. Superlinear convergence of nonsmooth

Newton methods for the equation F (x) = 0,

depend on “semismoothness” of F . Semi-

algebraic locally Lipschitz functions are always

semismooth (Bolte et al, 2007b).

A more classical example involves the fa-

mous Lojasiewicz inequality, which states that,

for any critical point a of a real-analytic function

f :Rn → R, there is an exponent θ ∈ [0, 1) such

that the function

|f − f(a)|θ
‖∇f‖

remains bounded around a. An analogous in-

equality holds for semi-algebraic functions (Bolte

et al, 2007a), leading to proofs of the finite length

of trajectories of the associated subgradient dy-

namical system

dx

dt
∈ −∂f(x).

Critical point theory furnishes another exam-

ple where semi-algebraic assumptions lead to el-

egantly simple characterizations. Among notions

of critical points available for nonsmooth func-

tions, the approach via the “weak slope” has con-

siderable theoretical appeal. Unfortunately, such

critical points seem hard to recognize in general.

However, for semi-algebraic functions on R2, a

simple topological characterization suffices (Ioffe

and Lewis, 2007).

The graph of any semi-algebraic function ad-

mits a Whitney stratification. This technique al-

lows us to relate a classical smooth notion, the

size of gradients of the function restricted to

its various strata, to a fundamental nonsmooth

idea, the size of Clarke subgradients (Bolte et al,

2007c).

Stratification provides one route to a non-

smooth Morse-Sard theorem. The classical ver-

sion asserts that any sufficiently smooth function

f :Rn → R is constant along any arc of critical

points. Analogous nonsmooth versions hold for

semi-algebraic f (Bolte et al, 2005, 2006). Con-

sequently, such functions can have only finitely

many critical values—a nonsmooth variant of the

classical theorem of Sard, and a precursor of re-

cent very general set-valued versions of Sard’s

theorem due to Ioffe. Such results have strik-

ing implications for variational analysis: given

any semi-algebraic generalized equation (such as

a semi-algebraic system of inequalities, for ex-

ample), small perturbations almost surely render

the system “metrically regular”. Metric regular-

ity is a central notion both in variational theory

and computational practice, guaranteeing that ap-

proximate solutions to the system, as measured
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by the a posteriori error, are close to exact solu-

tions.

We end with a more concrete example. The

eigenvalues of a nonsymmetric matrix A may

be very sensitive to slight perturbations to the

matrix, due to eigenvalue coalescence. Further-

more, it is well known that eigenvalues may

be misleading as practical modeling tools. For

example, the spectral radius of A predicts the

asymptotic stability of the dynamical system

xk+1 = Axk, but is insensitive to transient

peaks. A more predictive modeling tool is the

pseudospectrum

Λε(A) =
{

z ∈ C : ‖(A − zI)−1‖ ≥ 1

ε

}

,

for some small constant ε > 0. The pseudospec-

trum consists of all eigenvalues of small per-

turbations to A. Since the “resolvent norm”

z �→ ‖(A − zI)−1‖ is semi-algebraic, it has at

most finitely many critical values. Consequently,

unlike the spectrum, the set-valued mapping Λε

is Lipschitz around A for all small ε > 0 (Lewis

and Pang, 2006).
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Variational analysis has been recognized as a

rapidly growing and fruitful area in mathemat-

ics concerning mainly the study of optimization

and equilibrium problems, while also applying

perturbation ideas and variational principles to a

broad class of problems and situations that may

be not of a variational nature. It can be viewed

as a modern outgrowth of the classical calculus

of variations, optimal control theory, and mathe-

matical programming with the focus on perturba-

tion/approximation techniques, sensitivity issues,

and applications; see (1; 2; 3)

One of the most characteristic features of

modern variational analysis is the intrinsic pres-

ence of nonsmoothness, i.e., the necessity to

deal with nondifferentiable functions, sets with

nonsmooth boundaries, and set-valued mappings.

Nonsmoothness naturally enters not only through

initial data of optimization-related problems (par-

ticularly those with inequality and geometric con-

straints) but largely via variational principles and

other optimization, approximation, and perturba-

tion techniques applied to problems with even

smooth data. In fact, many fundamental ob-

jects frequently appearing in the framework of

variational analysis (e.g., the distance function,

value functions in optimization and control prob-

lems, maximum and minimum functions, solu-

tion maps to perturbed constraint and variational

systems, etc.) are inevitably of nonsmooth and/or

set-valued structures requiring the development

of new forms of analysis that involve generalized

differentiation.

It is important to emphasize that even the sim-

plest and historically earliest problems of optimal

control are intrinsically nonsmooth, in contrast

to the classical calculus of variations. This is

mainly due to pointwise constraints on control

functions that often take only discrete values as in

typical problems of automatic control, a primary

motivation for developing optimal control theory.

Optimal control has always been a major source

of inspiration as well as a fruitful territory for

applications of advanced methods of variational

analysis and generalized differentiation.

In this talk we discuss some new trends and

developments in variational analysis and its ap-

plications mostly based on the author’s recent

2-volume book (1; 2). Generalized differen-

tiation lies at the heart of variational analysis

and its applications. We systematically develop

a geometric dual-space approach to generalized

differentiation theory revolving around the ex-

tremal principle, which can be viewed as a local

variational counterpart of the classical convex

separation in nonconvex settings. This princi-

ple allows us to deal with nonconvex derivative-

like constructions for sets (normal cones), set-

valued mappings (coderivatives), and extended-

real-valued functions (subdifferentials). These

constructions are defined directly in dual spaces

and, being nonconvex-valued, cannot be gener-

ated by any derivative-like constructions in pri-

mal spaces (like tangent cones and directional

derivatives). Nevertheless, our basic nonconvex

constructions enjoy comprehensive/full calculus,

which happens to be significantly better than

those available for their primal and/or convex-

valued counterparts. The developed generalized

differential calculus based on variational princi-

ples provides the key tools for various applica-

tions.

Observe to this end that dual objects (multi-

pliers, adjoint arcs, shadow prices, etc.) have al-

ways been at the center of variational theory and

applications used, in particular, for formulating

the main optimality conditions in the calculus of

variations, mathematical programming, optimal
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control, and economic modeling. The usage of

variations of optimal solutions in primal spaces

can be considered just as a convenient tool for

deriving necessary optimality conditions. There

are no essential restrictions in such a “primal” ap-

proach in smooth and convex frameworks, since

primal and dual derivative-like constructions are

equivalent for these classical settings. It is not

the case any more in the framework of mod-

ern variational analysis, where even nonconvex

primal space local approximations (e.g., tangent

cones) inevitably yield, under duality, convex

sets of normals and subgradients. This convex-

ity of dual objects leads to significant restrictions

for the theory and applications. Moreover, there

are many situations particularly identified in this

book, where primal space approximations simply

cannot be used for variational analysis, while the

employment of dual space constructions provides

comprehensive results.

In this talk we pay the main attention to dis-

cussions of the basic constructions of general-

ized differentiation in variational analysis and

their applications to problems of nonsmooth

constrained optimization and optimal control.

We present complete characterizations of Lips-

chitzian stability and metric regularity of con-

straint and variational systems and their appli-

cations to sensitivity analysis with respect to

perturbations. Then we discuss necessary op-

timality conditions for some remarkable classes

of optimization problems including nondiffer-

entiable programming with functional and geo-

metric constraints and rather new while well-

recognized classes of mathematical programs and

multiobjective optimization problems with the

so-called equilibrium constraints, which closely

relate to problems of bilevel programming par-

ticularly considered in the talk. Finally, we con-

sider optimal control systems governed by evolu-

tion/differential inclusions and present new nec-

essary optimality conditions for them in gener-

alized Euler-Lagrange and Hamiltonian forms.

Our approach to optimal control of systems with

continuous-time dynamics is based of discrete

approximations, which provides efficient tools

of analysis from both numerical and qualitative

viewpoints. It time permits, we discuss particu-

lar applications of the results obtained to optimal

control systems with continuous-time dynamics

described by ordinary differential, functional dif-

ferential, and partial differential equations.
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1. Introduction

The purpose of the talk is to present main ideas

of mathematics of finance using the stochastic

control methods. There is an interplay between

stochastic control and mathematics of finance.

From one hand side stochastic control is a power-

ful tool to study financial problems. On the other

hand financial applications have stimulated devel-

opment in several research subareas of stochastic

control in the last two decades.

2. Pricing of financial derivatives

One of the classical problems of mathematics of

finance is pricing of financial derivatives. At a

given time T called maturity the buyer of a fi-

nancial instrument collects a gain which a ran-

dom variable H (called a contingent claim). We

would like to evaluate the price of H at the ini-

tial time. One can look at this price from the

perspective of the seller or the buyer. An accept-

able price for the seller is a such price that for the

amount he obtains at time 0 he is able (provid-

ing he invests it in an optimal way) to get at least

the compensation for H , which he is supposed

to deliver to the buyer. This investment to hedge

H forms a stochastic optimal control problem.

We would like to find the smallest initial capital

v, which invested in an optimal way gives us at

least the value H at time T . Denote by ps(H)

the minimal seller price. The buyer price is the

value v such that if he starts with initial capital

−v and invests it in an optimal way, then at time

T and the value of his portfolio plus his gain H is

nonnegative. Such maximal v forms so called the

buyer price pb(H) and is the maximal price ac-

ceptable for the buyer. Clearly pb(H) ≤ ps(H).

The interval [pb(H), ps(H)] is called an absence

of arbitrage interval and any price from this in-

terval is acceptable in the sense that neither seller

nor buyer is able to obtain a positive gain without

risk at time T (which we call an arbitrage). In

a particular situations when pb(H) = ps(H) for

all bounded H we say that the market is com-

plete which in turn corresponds to the fair price

or fair game between the seller and the buyer. If

we assume that the market does not allow an ar-

bitrage (which is a standard assumption) then the

buyer and seller prices have an interpretation as

the minimum or maximum over the set of mar-

tingale measures Q of the expected value of H

with respect to martingale measures. The mar-

tingale measure is an equivalent measure to the

original probability measure under which the as-

set prices of our market become martingales i.e

integrable stochastic processes such that the con-

ditional expectation of their value at time t + 1

given an information till time t is equal to their

value at time t. It should be pointed out that such

nice representation of the seller and buyer prices

is valid only when we assume that there are no

transaction costs on the market. The case of pro-

portional (to the value of transaction) transaction

costs has been studied recently by a number of

well known mathematicians and still seems to

be open in various aspects. In practice we usu-

ally pay fixed plus proportional transaction costs

which are much harder to analyze. Furthermore

frequently we can expect, in the case of larger

transaction, to pay smaller proportional transac-

tion costs which makes the transaction costs to

be concave. The recent studies on liquidity ef-

fects lead even to convex transaction costs. In the

last three cases we have only partial results con-

cerning particular models. The general approach

seems to be open.

3. Credit risk

The model and considerations in the previous

section were based on the assumption that if the
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transaction is made at time 0 the contingent claim

H is delivered at time T . It may happen however

that this delivery is subject to a certain risk called

default. When default happens before or at time

T then instead of H only its portion called recov-

ery claim is delivered at time T . From mathe-

matical point of view we may consider two cases:

the case when default time is a predictable stop-

ping time basing on the available information

and the case when it is an unpredictable stop-

ping time with a known intensity. In both cases

we have similar questions for defaultable contin-

gent claims: what is the price for such a claim if

there are no or there are transaction costs. Con-

sequently the pricing problems formulated in the

section 2 can be considered.

4. Term structure models

In the models above we consider investments in

assets or in banking account. An extension of

the market is to consider investments in bonds.

We denote by B(t, T ) the price at time t of the

zero coupon bond paying one unit at time T . In

so called single factor approach the price B(t, T )

is equal to the conditional expected value of the

exponent of the negative value of the integral

from t to T with respect to short term interest

rate r(t), which may be a solution to a certain

stochastic differential equation. In more recent

models following Heath Jarrow Morton method-

ology B(t, T ) is an exponent of the integral from

t to T of a two factor function f(t, s) called an

instantaneous forward rate, which for fixed s as

a function of t is a solution to a stochastic dif-

ferential equation. One can again consider the

problems of pricing of bond market derivatives

or any contingent claims using investments on

such extended market.

5. Portfolio selection

A vast literature in mathematics of finance is de-

voted to portfolio selection problems. We are

looking for a portfolio maximizing of certain util-

ity function. Any function which is concave and

increasing and is a function of our consumption

or value of our wealth process may be used to

measure our satisfaction (our utility). The prob-

lem of utility maximization can be considered

both for dynamical models, where growth of as-

set prices depends on time and we are look-

ing for an investment strategy maximizing utility

over certain time horizon, and for static mod-

els, where basing on historical data we model

one step growth rate and maximize portfolio over

one time step. In the case of dynamic models we

maximize the utility of our consumption together

with the utility of the terminal wealth process.

Another problem is to maximize the growth of

portfolio which is a logarithmic utility function

of the wealth process. Portfolio selection models

can be also used to price financial derivatives us-

ing e.g. indifference price, the price which guar-

antee the same expected value of the terminal

value of the utility function of the wealth pro-

cess, with initial capital diminished by the price,

plus the contingent claim as in the case when we

start with non diminished initial capital and at

the terminal time we do not obtain the contin-

gent claim.

6. Risk

One of the major problems of modern applied

mathematics is risk modelling. First of all it is

not clear what is risk and how to measure it. His-

torically the first approach to risk was introduced

in 1952 by Harry Markowitz, a later Nobel Price

winner in economy in 1990. He measured risk

as a variance the random portfolio wealth rate of

return. The problem was to maximize over one

time step (static portfolio selection) the expected

portfolio rate of return with variance considered

as a measure of risk not exceeding a certain level.

In this problem we practically have two cost func-

tionals one measuring the expected portfolio rate

of return and another one corresponding to risk

measured in a form of the portfolio variance. The

same problem can be considered in dynamic set-

ting. Instead of two cost functionals one also can

consider so called risk sensitive cost functional,

which measures the expected value plus variance

with a certain weight called risk factor. An alter-

native is to maximize the portfolio wealth rate of

return with a restriction on the risk introduced

by the Value at Risk (VaR), which is a certain

quantile restriction on the lower bound of port-

folio or other measures of risk e.g. conditional

VaR.
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1. INTRODUCTION

In this contribution we report on recent joint

work that extends some results in prior work (1)

on random variational inequalities (VI) with a

bilinear form on a fixed set. The extension is

in two directions: We admit the convex set to

be random similarly as in (2), (3). Instead of

a bilinear form we admit nonlinear forms from

monotone operator theory.

These new results allow us to treat a larger

class of applications and are in particular used

to treat nonlinear traffic networks in presence of

random data.

2. THE RANDOM VI

More specifically in a finite dimensional set-

ting, let (Ω,A, µ) be a complete σ-finite mea-

sure space. For all ω ∈ Ω, let K(ω) be a closed,

convex and nonempty subset of R
k. Consider a

Carathéodory function F : Ω × R
k 7→ R

k, i.e.

for each fixed x ∈ R
k, F (·, x) is measurable

with respect to A, and for every ω ∈ Ω , F (ω, ·)

is continuous. Furthermore, let λ : Ω 7→ R
k be

measurable. Throughout we assume that for each

ω ∈ Ω , F (ω, ·) is a monotone operator on R
k.

With these data we start from the following

Problem in ω-Formulation. For each ω ∈ Ω,

find x∗

ω ∈ K(ω) such that

〈F (ω, x∗

ω), x−x∗

ω〉 ≥ 〈λ(ω), x−x∗

ω〉 ,∀x ∈ K(ω) .

First we provide a measurability result for the

solution map of this problem.

Then we introduce a probability space

(Ω,A, P ) and the reflexive Banach space

Lα(Ω, P, Rk)α ≥ 2 of random elements V from

Ω to R
k with finite expectation EP [V ], that is,

with finite

{EP [V ]}α = EP
‖V ‖

α =

∫
Ω

‖V (ω)‖αdP (ω) .

We define the convex and closed set K by V ∈

K ⇐⇒ V ∈ Lα(Ω, P, Rk) and V (ω) ∈ K(ω)

P-almost sure.

Under an appropriate growth condition the

nonlinear map F becomes an Nemytski opera-

tor. Thus we arrive at the following

Problem in Integral Formulation Find U ∈

K such that for all V ∈ K

EP
{〈F (U), V − U〉} ≥ EP

{λ(V − U)} .

We discuss the relations between these problem

formulations and give existence and uniqueness

results.

3. THE SEPARATED CASE

Here we turn to the special case where the non-

linear map F is separated in deterministic parts

and some random variables via

F (ω, x) = S(ω)G(x) + H(x)

analogously

λ(ω, x) = R(ω) bT x

where F,G : R
k 7→ R

k are monotone maps,

b ∈ R
k, and R and S two real valued random

variables on Ω. We assume that S ∈ L∞(Ω) and

R ∈ Lα(Ω). Further, we consider the random set

M(ω) := {x ∈ R
k : Cx ≤ T (ω)}, ω ∈ Ω .
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with a matrix C ∈ R
m×k and a random m -

vector T such that T ∈ Lα
m(Ω, P ) In order to

get rid of the abstract sample space Ω, we con-

sider the joint distribution P of the random vec-

tor (R,S, T ) and work with the special probabil-

ity space (Rd,B(Rd), P), where the dimension

d := 2 + m. Thus we obtain a probabilistic inte-

gral formulation of our VI problem.

In this setting we present a discretization tech-

nique based on averaging (piecewise constant ap-

proximationof the distributions) and truncation,

prove a Mosco convergence result for the feasi-

ble random set, and establish norm convergence

of the approximation procedure for a unique so-

lution.

4. NUMERICAL EXAMPLES

AND APPLICATIONS TO

TRAFFOC FLOW

First we expand a numerical example from (4)

with an 5×5 matrix and the arctan nonlinearity

in the operator F on a simplex-like subset, where

the additive parameter becomes an random vec-

tor.

Then we study nonlinear traffic flows in con-

gested networks following the Wardrop equilib-

rium principle. We distinguish between the link

and path formulations and discuss the loss of

strong monotionicity when passing from the link

to the path formulation. We numerically treat

small networks, where we admit that the cost

vector function and/or the traffic demand are ran-

dom.

In all these examples we compute the mean

values and variances of the solution.
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1. INTRODUCTION

The proximal-point-algorithm (PPA), originally
introduced by Rockafellar (7), and the auxiliary-
problem-principle (APP), which goes back to
Cohen (3) are well-known solution methods for
variational inequalities. In the last years, exten-
sions of these methods have been considered e.g.
by Kaplan/Tichatschke (5), Eckstein (4), Cen-
sor/Iusem/Cenios (2) and Solodov/Svaiter (8).
A proximal-auxiliary-problem (PAP) principle,
combining the advantages of APP and PPA,
was introduced by Kaplan/Tichatschke (6) and
a general convergence theory was developed.
In an extension of this method they use Breg-
man distances to achieve an interior-point-effect.
In our work we replace these Bregman dis-
tances by logarithmic-quadratic distance func-
tions which also lead to an interior-point-effect
but don’t have the disadvantage of requiring para-
monotonicity of the operator of the considered
variational inequality. As a consequence, the
logarithmic-quadratic PAP (LQPAP) can be used
for a broader class of variational inequality prob-
lems.

2. LQPAP-METHOD

We suppose that the operator of the given vari-
ational inequality is splitted into the sum of a
maximal monotone, set-valued operator Q and
a single-valued, continuous operator F and con-
sider the problem

VI(F ,Q,K):

find x∗ ∈ K and q∗(x∗) ∈ Q(x∗):

〈F(x∗) + q∗(x∗), x− x∗〉 ≥ 0 ∀ x ∈ K,

where K has to be a polyhedral subset of Rn,
given by

K = {x ∈ Rn:Ax ≤ b}

with A ∈ Rp×n, rank(A) = n, b ∈ Rp and
int(K) 6= ∅.

Our extension of the APP for solving
VI(F ,Q,K) can be subsumed under the follow-
ing general iterative scheme:

Starting with x1 ∈ int(K), at the (k + 1)th
step we have a current iterate xk ∈ int(K) and
calculate xk+1 by solving the problem:

(P k
δ ):

find xk+1 ∈ K, qk(xk+1) ∈ Qk(xk+1):

〈F(xk) + qk(xk+1) + Lk(xk+1)− Lk(xk)

+χk∇ID(xk+1, xk), x− xk+1〉
≥ −δk

∥∥x− xk+1
∥∥ ∀ x ∈ K.

This scheme includes an outer approximation
of the operator Q in each iteration by set-valued
operators Qk and an inexact solution of the aux-
iliary problems. The family of monotone and
continuous operators {Lk} allows different types
of approximations of the operator F . The term
χk∇ID(xk+1, xk) is made up by a positive pa-
rameter χk and the gradient (with respect to the
first vector argument) of a distance function D.

As a special case we get the classical inexact
PPA by setting Q = F+Q, F = 0, Qk = Q,∀k,
Lk = 0,∀k, and D(x, y) = 1

2 ‖x− y‖2. A gen-
eral inexact APP-scheme emerges from (P k

δ ) by
choosing F = F +Q, Qk = 0,∀k, and

D(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉 (1)

with h continuously differentiable and ∇h Lip-
schitz on K. Then, Lk + χk∇h plays the role
of the auxiliary operator. Kaplan/Tichatschke
showed in (5), that in scheme (P k

δ ) it is possible
to take a distance function like in (1) but with a
Bregman-function h, although the gradient map
of a Bregman-function is not Lipschitz.
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In our PAP-method with logarithmic-
quadratic distances, D is declared with the
help of the following function which was first
introduced by Auslender (1): For v ∈ R

p
++

define

d(u, v) :=

{ ∑p
i=1 u2

i − uivi − v2
i log ui

vi
if u ∈ Rp

++

+∞ otherwise.

d(·, v) is a proper, lower semi-continuous and
convex function, nonnegative and d(u, v) = 0
if and only if u = v. Further, dom(d(·, v)) =
R

p
++. Setting l(x) := b−Ax we get the distance

function

D(x, y) := d(l(x), l(y)), (2)

which is not of Bregman-type, because it can’t be
constructed like in (1) with a Bregman-function
h.

Two properties of D are important: First
of all ∇ID(·, xk) is strictly monotone for all
xk ∈ int(K). Together with a positive param-
eter χk this ensures that if the auxiliary prob-
lems (P k

δ ) are solvable they are uniquely solv-
able. This regularization effect enables us to deal
with ill-posed problems. Second, it holds that the
effective domain of ∇ID(·, xk) coincides with
int(K). This leads to an interior-point-effect,
which means that the auxiliary problems (P k

δ )
can be treated as unconstrained ones, because all
iterates will automatically belong to the interior
of the restriction set K.

3. CONVERGENCE ANALYSIS

The assumptions in our convergence theorem are
not stronger than those typically made for the
PPA with Bregman-functions or the APP.

Apart from the already mentioned proper-
ties of the involved operators, we need that
dom(Q) ∩ K is a nonempty and closed set and
ri(dom(Q)) ∩ int(K) 6= ∅. Further, the opera-
tors F − Lk must fulfill a sort of Dunn-property
and the family {Lk} a continuity-property which
is especially fulfilled if we have the uniformly
Lipschitz continuity of the operators Lk. To ap-
proximate the operator Q one can for example
choose the ε-enlargements Qεk

with εk ≥ 0,∀k
and

∑∞
k=1 εk < +∞.

The regularization parameter χk can vary
from iteration to iteration, but has to be greater

than a special positive constant. The error toler-
ance criterion is simply

∞∑
k=0

∥∥∥ek+1
∥∥∥ < +∞

which can easily be implemented.
If VI(F ,Q,K) is solvable we can prove con-

vergence of the iterates {xk} generated by the
LQPAP-method towards a solution.

4. CONCLUSIONS

We considered a general iteration scheme for
solving variational inequalities, which can be
viewed as an extension of the auxiliary-problem-
principle. As regularization term we use a
logarithmic-quadratic function that leads to an
interior-point-effect. In contrast to the usage of
Bregman distances we don’t have to require para-
monotonicity of the operator of the variational
inequality which opens our algorithm to a wider
class of problems.
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1. Introduction

Let (V, ‖·‖) be a Hilbert space with the topologi-
cal dual V ′ and the duality pairing 〈·, ·〉 between
V and V ′. The variational inequality (VI)

find u∗ ∈ K and q∗ ∈ Q(u∗) :

〈F(u∗) + q∗, u− u∗〉 ≥ 0 ∀ u ∈ K (1)

is considered, assuming that K ⊂ V is a convex
closed set, Q : V → 2V ′ is a maximal monotone
operator and F : K → V ′ is a weakly continuous
operator with certain monotonicity properties.

In the sequel we denote by {Kk} a family of
convex closed sets, approximating K, Kk ⊂ V ;
and by {Qk} a family of operators, approxima-
ting Q. Usually, it is supposed that Qk is maxi-
mal monotone, or that

Q ⊂ Qk ⊂ Qεk
,

Qε means the ε-enlargement of Q.
In proximal point methods (PPM) and the

Auxiliary Problem Principle (APP), a regulari-
zing functional h of Bregman type with zone S

is used, where

S := V, h : u 7→ 1
2
‖u‖2.

In this paper we use a regularizing functional
h of Bregman type with zone S = intK and
consider the following general scheme for
solving VI (1):

At step k + 1, having a current iterate uk

(u1 ∈ K ∩ S is arbitrarily chosen)
the point uk+1 is calculated by solving the pro-
blem

(P k
δ ) find uk+1 ∈ Kk ∩ S̄, qk ∈ Qk(uk+1) :

〈F(uk) + qk + Lk(uk+1)− Lk(uk)

+χk(∇h(uk+1)−∇h(uk)), u− uk+1〉 (2)

≥ −δk‖u− uk+1‖ ∀ u ∈ Kk ∩ S̄.

Here {δk} is a non-negative sequence with
limk→∞ δk = 0, whereas 0 < χk ≤ χ̄ < ∞.
The main advantage consists in the ”interior point
effect” of this approach, i.e., (P k

δ ) is in fact an
unconstrained problem.

2. Set and operator approximation

In the literature, in different regularization me-
thods when approximation of the set K is inclu-
ded, usually it is supposed that {Kk} converges
to K ”sufficiently” fast in the Hausdorff or Mosco
sense, for example:

distH(Kk,K) ≤ cϕk,
∑ ϕk

χk
< ∞.

However, this type of assumptions is not very
realistic when dealing with VI’s in Mathematical
Physics. Indeed, constructing {Kk}, Kk = Khk

,
by means of the FEM on a sequence of triangu-
lations with parameter hk → 0, as well as by
related FDM, we meet the following typical si-
tuation:

(i) for v ∈ K and vk := arg minz∈Kk ‖v − z‖ it
holds

lim
k→∞

‖v − vk‖ = 0;

(ii) for v ∈ U∗ (solution set) it holds

‖v − vk‖ ≤ c(v)hβ1

k , β1 > 0;

(iii) for a bounded sequence {wk}, wk ∈ Kk, the
estimate

min
v∈K

‖v − wk‖ ≤ chβ2

k , β2 > 0

is valid (of course, c = 0 fits the case Kk ⊂
K, but this inclusion is not guaranteed, in
general).
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Thus, because of the weak property (i), FEM
cannot provide the required Hausdorff or Mosco
approximation of K.

Considering (i)-(iii) as conditions, together
with ∑ ϕk

χk
< ∞, (3)

where ϕk := max{hβ1

k , hβ2

k },
∑ δk

χk
< ∞

we deal with quite different requirements on the
type of approximation (cf. (3)).

An approximation of Q by means of smoo-
thing procedures or the use of the ε-enlargement
concept will be discussed, too (cf. (4)).

3. Bregman-function-based me-
thods

To our knowledge, Bregman functions h with
zone S 6= V have not been used in connection
with APP.

In different variants of APP the operator ∇h

is supposed to be Lipschitz continuous on K or
on some set K̂ ⊃ K. This excludes the use of
Bregman-like functions with zone S 6⊃ K, and
in particular with S ⊂ K.

In fact, Bregman functions with zone S ⊂ K

provide a full ”interior point effect”, i.e. with a
certain precaution the auxiliary problems can be
treated as unconstrained ones.
Now, we consider scheme (2), allowing S ⊂
K, S := intK. Conditions on h require that

S ∩D(Q) ∩Kk 6= ∅, S̄ ∩ U∗ 6= ∅.
In order to use our convergence analysis in this
case, an approximation of K has to be inserted
into the algorithm for solving the subproblems.
I.e., the subproblems are considered with Kk :=
K and within the process of their solution by an
appropriate method the approximation of K is
realized.

However, in general some additional assump-
tions on the operator Q are needed, even for the
exact PPM with strongly convex h. If Q is not
symmetric, the paramonotonicity and pseudo-
monotonicity (in the sense of Brezis-Lions) of Q
are supposed. In case V := Rn, Solodov/Svaiter
(6) have shown that the pseudo-monotonicity re-
quirement can be omitted, but their arguments
are finite-dimensional in essence.

The convergence of the extended APP in form
(P k

δ ) with Bregman function h is proved under
certain assumptions (cf. (5)).

Up to now, zone - or boundary coercive Breg-
man functions with zone intK have been created
only for linearly constrained sets K or in the case
that K is a ball.

The more general case

K = {x ∈ Rn : gi(x) ≤ 0, i ∈ I1 ∪ I2},

where I1 ∪ I2 = I = {1, ..., m}, and

gi (i ∈ I1) affine functions,
gi (i ∈ I2) convex, C1 functions,
max{gi : i ∈ I2} is strictly convex on K,

∃ x : gi(x) < 0, ∀ i ∈ I,

allows us to use a special class of Bregman func-
tions with zone intK (see (5)):

h(x) =
m∑

i=1

ϕ(gi(x)) + c‖x‖2, (c > 0). (4)

Certain properties and particular realizations of
the function ϕ will be discussed.
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1. INTRODUCTION 

 
 
The nanomechanics (Bhushan B., 2004) plays 
important role in todays world. The models of 
materials behaviour in the atomistic scale allows 
to understand the micro, meso and macroscopic 
events. There is also possibility to connect 
models in different scales which leads to 
powerful analysis systems. The analysis at the 
nanoscale level can be performed using 
molecular dynamics and statics. The nano 
model is highly nonlinear and modifications of 
the Newton-Raphson method are used in 
molecular statics (Kwon Y. W. 2003). The 
discrete atomic model can be also analysed  
with use of global optimization methods. The 
minimum of the total potential energy is 
connected with the final positions of atoms. The 
evolutionary methods (Burczynski T., 
Osyczka A., 2004),  (Michalewicz Z., 1992) are 
well known global optimization algorithms and 
can be used in such an approach. The 
combination of the evolutionary algorithm and 
classical approaches based on the objective 
function gradient speeds up the computations 
reducing overall number of objective function 
evaluations (Burczyński T., Orantek P., 2001). 
The multiscale computations are performed by 
combining the hybrid evolutionary approach for 
nanoscale and the Finite Element Method 
(Zienkiewicz O. C., Taylor R. L., 2000) for the 

microscale level. The evolutionary algorithm 
can be also used as the shape and topology 
optimization tool for multiscale models. 
 
 

2. MULTISCALE ANALYSIS WITH USE  
OF EVOLUTIONARY ALGORITHM 

 
A material system is divided into regions. For 
the regions were highly nonlinear phenomena 
occurs a discrete model is used, the rest of the 
model is discretized using finite elements (Fig. 
1).  
 

 
 
Fig. 1. A two-scale model of the material system  
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The flowchart of analysis algorithm is presented 
in Fig. 2. The analysis problem is computed 
using FEM in the first step. The displacements 
values on the boundary between the FEM and 
discrete models are transferred to the nano-
model. The evolutionary algorithm is used to 
find the proper atom positions in discrete model. 
The resultant forces (the influence from the 
discrete model on the FEM model) on the 
boundary between scales are mapped as the 
forces. The computations of new displacements 
values are performed using FEM considering 
forces and previously obtained displacements on 
the boundary between scales. The algorithm 
works iteratively until the end computations 
criterion is fulfilled. The evolutionary 
computations for the discrete region 
(Mrozek A., Kuś W., Orantek P., Burczyński T., 
2005) are performed by using the fitness 
function described as the total potential energy 
of that part of the structure. The chromosomes 
contain information about atoms positions. The 
genes values are connected with coordinates of 
atoms. The number of genes is equal to the 
number of “free atoms” multiplied by number of 
degrees of freedom (2 in 2D, 3 in 3D). The term 
“free atoms” means atoms not constrained. The 
atoms are constrained on the boundary between 
scales (the displacements of that atoms are 
mapped from the finite element model). The real 
coding is used – the atom coordinates are not 
coded into binary strings. The ranking selection 
is used and evolutionary operators such as: the 
Gaussian and normal mutation and the simple 
crossover. The gradient mutation (Burczyński 
T., Orantek P., 2001) is used in hybrid 
evolutionary algorithm. The gradient  mutation 
are invoked in every iteration of the 
evolutionary algorithm. The gradient mutation 
perform few steps toward optimum for the best 
known solution in the population. The hybrid 
approach allows to speedup computations, and 
low number of gradient mutations do not ruin 
global optimization nature of the evolutionary 
algorithm. 
 
 

3. REMARKS 
 

The full paper and presentations during 
conference will contain more detailed 
information about used inter atoms potentials, 
the evolutionary algorithm and the coupling 
method. The numerical examples of analysis 
performed with the use of the evolutionary 
approach and optimization of multiscale 
structures will be shown.  
 

 
 
Fig. 2. Flowchart of multiscale analysis  
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1. INTRODUCTION

Accuracy of simulations of materials processing 
depends on proper description of phenomena 
occurring during deformation. Rheological 
models usually treat material as continuum and 
are unable to describe properly several impor-
tant phenomena. Therefore, a search for alterna-
tive models, which account for non-continuous 
structure of materials and for the fact, that vari-
ous phenomena in the materials occur in various 
scales, is the objective of research. Accounting 
for the stochastic character of phenomena is an 
additional challenge. Multiscale models, see eg. 
(Das, 2002), are one of the solutions capable to 
overcome mentioned difficulties. 
Authors have developed multiscale models 
based on combination of the Finite Element 
(FE) method and Cellular Automata (CA). Such 
model describing development of the strain lo-
calization during material processing (Madej et 
al., 2007) is one of the CAFE method applica-
tions. Numerical tests confirmed qualitatively 
good predictive capability of the model. Prob-
lem of quantitative accuracy still remains open. 
Application of the inverse analysis methodology 
(Szeliga et al., 2006) to determine parameters of 
the developed rheological model is the subject 
of this work, and is a step towards qualitatively 
good predictive capabilities of the CAFE model. 

2. IDENTIFICATION OF THE CAFE MODEL

Strain localization in deformed material is a re-
sult of simultaneous initiation and development 
of micro and shear bands in the micro and mezo 

scale, respectively. According to these two 
scales, in the approach proposed in (Madej et 
al., 2007), two CA spaces representing the mate-
rial behavior in the micro scale (micro shear 
band space - MSB space) and mezoscale (shear 
band space - SB space) are introduced and at-
tached to the FE code. Both CA spaces are de-
fined by several state variables that describe 
each cell, as well as by a set of transition rules 
defined for these spaces. Transition rules, which 
control changes of states in MSB and SB space, 
are defined based on experimental knowledge 
(Korbel, 1998; Cizek 2002). The details describ-
ing the assumed cell state and proper transition 
rules are presented in (Madej et al., 2007).
Information about the occurrence of micro shear 
and shear bands is exchanged between the CA 
spaces during each time step, according to the 
defined mapping operations (Fig.1). 

Fig. 1. Scheme of the data flow in the CAFE 
model.
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Flow of the information between the scales goes 
in both directions, from macroscale to mezo-
scale and microscale, as well as from microscale 
and mezoscale to macroscale. In each time step, 
information about the stress state is sent from 
the FE solver to the MSB space, where the de-
velopment of microshear bands is calculated 
according to the transition rules. After exchange 
of information between CA spaces, transition 
rules for the SB space are introduced, and 
propagation of the shear bands is modeled. 
Based on the information supplied by the CA 
spaces, the flow stress CA

pσ is calculated and is 
used in the FE program as modified flow curve 
in the next step. The CAFE model was applied 
to simulate various tests and industrial processes 
and good qualitative agreement with the ex-
periment was observe. Evaluation of parameters 
of the CAFE model by the inverse analysis is 
performed to obtain better quantitative accuracy. 

3. INVERSE ANALYSIS

Particular attention is put on identification of the 
internal variables that describe each CA cell, 
such as critical stress *

maxτ generated by Gauss 
function (x – expected value devσ – standard de-
viation). The slope of the hardening K in the 
flow stress function nKσ ε=  is the third opti-
mization variable. ε represents effective strain 
and n is an exponent, which for aluminum is 
assumed 0.2. Channel test (Fig. 2) is selected as 
experiment and measurement of the hardness at 
the cross section of the sample after the test is 
the experimental data for the inverse analysis. 
Fig. 2 shows the locations at the cross section 
where the hardness is measured. 
Algorithm was tested first and experimental data 
were generated by the FE code. Fig. 3 shows 
distribution of hardness along sample obtained 
for x = 380 MPa, devσ = 100 MPa and K = 425 
MPa which was considered an experimental 
results in the objective function defined as:

Fig. 2. View of the channel test (top) and cross 
section of the sample after compression showing 
distribution of strains and location of points, at 
which the hardness was measured.
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Fig. 3. Harness along the sample, which is used 
as an input for the inverse analysis.
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where: HBexp, HBcalc – measured and predicted 
hardness, N – number of sampling points.
Optimization yielded the values of the optimiza-
tion variables (x, devσ , K), which are close to the 
assumed. 

4. CONCLUSIONS

Method of identification of parameters in the 
CAFE model is presented in the paper. It is 
shown that the parameters of the model can be 
predicted using hardness measurements as input.
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1. Introduction 

 
The finite element analysis (FEA) has become a 
significant tool for planning, analysis and opti-
mization of metal forming processes in indus-
trial manufacturing. Though results obtained by 
numerical simulations have to be verified ex-
perimentally. This leads to high tooling costs for 
practical trails and results in extra downtimes. 
For this reason, the experimental investigations 
are often performed on reduced-scale test mod-
els by using the similarity theory. The real proc-
ess variables are calculated from the computed 
model values. Up till now, commercial FE-
systems for bulk metal forming do not take size-
effects into consideration. 
 

2. Experimental Investigations 
 
In a current research work at IFUM, the size 
effects is determined experimentally. The results 
will be implemented in commercial FE-
softwares by programming user-defined subrou-
tines. First, upsetting and ring compression tests 
were performed to quantify the size effects for 
the yield stress σf and the friction factor m. Cyl-
inder compression tests are carried out on work 
pieces of different sizes and temperatures. The 
specimen sets have a volume ratio of 4:2:1 at a 
constant diameter to height ratio. The deter-
mined yield curves show obvious differences 
(Fig. 1). Because of the deviations resulting 
from the inaccuracy of upsetting plates parallel-
ism, it is difficult, up till now, an assured defini-

tion of a principle in terms of size effect on the 
flow stress.  
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Fig. 1 Array of yield curves (schematic picto-
rial) 
 
In addition, ring compression tests were per-
formed on different sets of specimens with the 
same geometric conditions as the upsetting tests. 
The results of these investigations show that the 
forming temperature has a significant influence 
on the friction factor, especially in dry friction 
conditions, because of adhesion effects. Poten-
tial size effects can be superposed. Additional 
ring compression tests under appropriate lubri-
cation conditions are essential to obtain more 
precisely predictions concerning the size effects 
on the friction behavior.  
The experimental investigations accomplished 
so far show significant size effects on the flow 
stress and the friction factor in bulk metal form-
ing processes. Further upsetting and ring com-
pression tests are necessary for an accurate 
quantification. 
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3. Integration of Size-effects in FEA 
 

The next step is to implement the achieved re-
sults in the FE-software by programming of 
user-defined subroutines to generate size de-
pendant yield curves and friction factors. Ac-
cording to mesh size, different flow curves and 
friction conditions will be called by the FE-
Software (Fig. 2). 
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Fig. 2 Implementation of size-effects in the FEA 
(example) 
 

4. CONCLUSIONS 
 

So far the experimental investigations show sig-
nificant size-effects on the yield stress and the 
friction coefficient. Further upsetting and ring 
compression tests are necessary to determine the 
results more precisely. 
After implement the size-dependent effects in 
the FEA complex component will be forged to 
verify the improved simulation.  
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1. INTRODUCTION 

 
The analysis and optimization of shell structures 
plays important role in industry. The 
metallurgical furnace, pressure vessels, housings 
are modelled as shell surfaces. The important 
issue in the analysis is sometimes, taking into 
account small features – holes, holders. The 
computations without theses small parts give 
quite good results when a big factor of safety is 
used. The goal of the paper is to present a global 
optimization method which allows to use low 
safety factors due to proper modelling of a 
structure taking into account small features 
influence. The multiscale approach is used. The 
two scales are presented in the paper – one 
connected with the structure, the other with 
small features of the structure. The Finite 
Element Method is used in each scale 
(Zienkiewicz O. C., Taylor R. L., 2000). The 
evolutionary algorithm (Michalewicz Z., 1992) 
is used as a global optimization method. The 
design variables are coded into chromosomes in 
the form of genes and the evolutionary 
optimization is used. The optimization of the 
structures with use of evolutionary algorithms 
was presented in many papers for different 
problems e.g. Burczyński T., Osyczka A., 2004. 
Additionally, in the presented calculations,  the 
grid-based evolutionary algorithm is used 
(Kuś W., Burczyński T., 2006). 
 

2. MULTISCALE FEM ANALYSIS  
 

The analysis is performed using two scales – 
macro and micro. The structure is modelled as a 

macro scale first. A part of the structure with 
small features is removed from the macro scale 
and modelled as a microscale. The example of 
such a structure is presented in Fig. 1.  
 

 
 
Fig. 1. Macro-micro model of the structure 
 

 
 
Fig. 2. Algorithm for macro-micro FEM 
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The “small features” in the example are 
small circular voids (for example in cooling 
structure). The analysis of the structure is 
performed using FEM. The macro and 
micro regions are computed as shown in the 
flowchart Fig. 2. The material of regions 
can be modelled as linear or nonlinear, also 
combination can be used. The most efficient 
approach will be use nonlinear model of the 
material for micro regions and linear 
material for macro, of course if the 
nonlinearities occur only in micro zones. 

 
3. EVOLUTIONARY OPTIMIZATION 

 
The goal of the evolutionary optimization is to 
reduce a mass of the considered structure. The 
genes contain information about thickness of 
different regions of the shell. The real coding is 
used in the paper. The constraints on maximum 
equivalent stresses are imposed. The constraints 
are introduced as a penalty function (in most 
cases a chromosome with the described 
structure with too big stresses is eliminated 
during the selection process). The Gaussian and 
uniform mutations, the simple crossover are 
used. The selection is performed using the 
ranking selection algorithm. 
The number of fitness function evaluations, 
when the evolutionary algorithm is used, can be 
in factor of hundreds or even thousands. The 
most computational time is taken by the FEM 
analysis. Therefore the parallel evolutionary 
algorithm is used. The fitness function 
evaluation is performed in the parallel way. The 
grid-based evolutionary algorithm is used 
(Kuś W., Burczyński T., 2006). The algorithm 
works in parallel, additionally computational 
grids (Foster I., Kesselman C., 2003) can be 
used during computations.  

 
4. NUMERICAL RESULTS 

 
The shell shown in Fig. 1. is considered. Two 
test were performed. The shell was modelled as 
solid one, without influence of small holes – 
equivalent stresses are shown in Fig. 3.  
 

 
Fig. 3. Equivalent stresses plate without 
considering influence of small features 

 
The second test uses multiscale modelling. The 
macroscale region is shown in Fig. 4a, the 
microscale region in Fig. 4b.  

a) b)  
 

5. CONCLUSIONS 
 

In the full paper more details about analysis and 
optimization of shell structures by using multi 
scale approach will be presented. Additional 
examples will be presented too. 
The micro and macro regions can be both 
treated as linear, nonlinear or macro as linear 
and micro as nonlinear. The method shown in 
the paper allows to optimize structures with 
regions with small features which significantly 
influence on  the effort of the entire structure. 
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1. INTRODUCTION 

 
Hard systems of nanocoatings deposited using 
PVD (physical vapour deposition) are used in 
various applications. Numerical models of 
deformation of these coatings are needed for 
aiding design of new applications of these 
coatings. Correct determination of nanomaterial 
parameters is crucial for accuracy of 
simulations. FEM and ANN (Koker et al., 2007) 
are often used to obtain parameters of models 
for various materials. The objective of the 
present work is identification of material 
parameters of nanocoatings in hard system using 
both mentioned methods (Kopernik et al., 
2007). The inverse analysis is performed using a 
metamodel (Kusiak et al., 2005). 

 
2. MODEL OF NANOINDENTATION TEST 

 
Experimental nanoindentation test is performed 
using a Nano Test System. In the present work 
deformed 840 nm thick and 2600 nm wide 
specimen is a system of 3 hard nanocoatings. 
Two coatings are deposited periodically, 
respectively coating 1 (elastic, 400 nm thick) is 
repeated two times and coating 2 (elastoplastic, 
40 nm thick) is a single interlayer. Indentation 
test, which is depth controlled, supplies force 
versus indentation depth data. Diamond (Young 
modulus E = 1141 GPa, Poisson ratio ν = 0.07), 
pyramid, deformable indenter (radius R = 150 
nm, pyramid angle α = 70.32º) penetrates into 
specimen at a depth of 100 nm. Application of 
the inverse analysis to interpretation of the test 
results is the objective of the project. Inverse 
algorithm proposed in (Szeliga et al., 2006) is 
used. Due to very high computing costs, the 

concept of the metamodel (Kusiak et al., 2005) 
is applied in optimization. ANN was used as 
metamodel. FORGE 2 FEM code is used as 
direct problem model. Axisymmetric 2D FEM 
solution is performed. The friction coefficient µ 
is assumed 0. The following material model is 
identified: 

nKε=σσσσ             (1) 
where: σσσσ – flow stress, ε - effective strain, K, n 
–parameters, which are optimization variables. 
Young modulus E is the third variable. Since 
testing of the approach is the main objective, 
the experimental data were generated by the 
FEM code. Two cases are considered. Two sets 
were assumed as the real material parameters: I) 
n = 0.125, E = 380 GPa, K = 290 MPa and II) n 
= 0.175, E = 400 GPa, K = 270 MPa. 120 
simulations were performed to supply data for 
training ANN, for the following parameters: 
a) K = 50, 60, 100, 110, 300, 310 MPa;  
b) n = 0.1, 0.15, 0.2, 0.25; 
c) E = 330, 350, 370, 390, 410 GPa. 
 

3. METAMODEL AND RESULTS 
 

Approximation of FEM output data is done 
using MLP - type of ANN with architecture 4-
2-1 and logistic functions of transfer in the first 
and second network layers, and linear function 
of activation in output network layer. 
Optimization variables in the inverse analysis 
(E, K, n) and strain are the input data and the 
load is the output. 90 training sets of data for n, 
K and E were used as an input. Each set is 
composed of 20 values of force versus 
displacement data.  
The network was tested for n = 0.15, E = 370 
GPa, K = 100 MPa and the results are shown in 
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Figure 1. Mean square error for test sets is 
equal to 40 µN2 what confirms good predictive 
capability of the network as the metamodel. 
Inverse analysis was performed next. The goal 
function is the mean square root error between 
experimental data and network output: 

( ) 2

1

1
( , , ) ( ) ( , , , )

N

exp ANN i
i

n E K F i F n E K d
N

φ
=

= −∑

where: Fexp – experimental force, generated by 
FEM for the assumed real material parameters, 
FANN - force predicted by ANN, di – 
displacement, N - umber of sampling points. 
Genetic algorithm is used as optimization 
algorithm. The results for both cases I and II 
are presented in Figure 2. Evaluated minimum 
is found at n = 0.11, E = 384 GPa,  
K = 280 MPa for case I and n = 0.17, E = 397 
GPa, K = 331 MPa for case II. The goal 
function is respectively φ = 34 µN2 and φ = 21 
µN2. 
Figure 3 shows results of simulation of strain 
distribution in the sample, using the material 
parameters determined from the inverse 
analysis for the case I. 
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Fig. 1. Results of the network test set for work-
hardening curve (n = 0.15, E = 370 GPa,  
K = 100 MPa). 
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Fig. 2. Results of inverse analysis for the case I 
and the case II.  

 

 
Fig. 3. Strain distribution in the 2D 
axisymmetric sample for material parameters 
determined from the inverse analysis for the 
case I.  

 
6. CONCLUSIONS 

 
Presented approach is useful technique for 
optimization in problems characterized by high 
goal function computing costs. The algorithm 
allows to decrease the number of time-
consuming FEM calculations. Presented 
problem of optimization of flow stress 
parameters for nanocoatings proved efficiency 
of the method. Good predictive capability of the 
trained ANN was confirmed. Low value of the 
goal function was obtained also in the inverse 
analysis, but the minimum is weak and problem 
of uniqueness of the solution exists. 
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1. PROBLEM AND OPTIMALITY
CHARACTERIZATION

In this paper we study the numerical treatment
of optimal control problems with bounded dis-
tributed controls and elliptic state equations by
barrier-penalty methods. Let Ω ⊂ R2 be some
bounded convex domain and let be given q, b ∈
L∞(Ω). Considered is the following optimal
control problem

J(y, u) :=
1
2

∫
Ω
(y − q)2 +

α

2

∫
Ω
u2 → min!

s.t. −∆y = u in Ω, (1)

u+
∂y

∂n
= 0 on Γ := ∂Ω,

u ∈ Uad,

where α > 0 denotes a regularization parameter
and the set of admissible controls is defined by

Uad := {u ∈ L2(Ω) : u ≤ b a.e.in Ω} . (2)

The only one-sided bounds serves to simplify
the presentation, but does not principally restrict
the considered class of problems. The state
equations of the given problem (1) are under-
stood in the weak sense of the Sobolev space
V := H1(Ω). With the usual bilinear form
a(·, ·) : V × V → R defined by

a(y, v) :=
∫

Ω
∇y · ∇v+

∫
Γ
yv ∀y, v ∈ V (3)

for any u ∈ Uad there exists a unique y ∈ V

such that
a(y, v) = (u, v) ∀v ∈ V.

With the continuous embedding V ↪→ L2(Ω) by
Su := y this defines a continuous linear mapping
S : V → L2(Ω) and problem (1) can be reduced
to its equivalent form

Ĵ(u) := J(Su, u) → min! s.t. u ∈ Uad. (4)

Since Uad is nonempty, closed and convex and
Ĵ is continuous and strongly convex problem
(4) possesses a unique optimal solution ū and
(Sū, ū) ∈ V × Uad is the unique optimal solu-
tion of (1).

Under the made assumptions for the optimal-
ity is that the following system necessary and
sufficient.

(ȳ − q, y) + a(y, v̄) = 0 ∀y ∈ V,
a(ȳ, v)− (ū, v) = 0 ∀v ∈ V,

α(ū, u− ū)− (u− ū, v̄) ≥ 0 ∀u ∈ Uad,

(5)

where the inequality is equivalent to

ū = P (ū− σ(v̄ + αū)) (6)

for any σ > 0, where P denotes the L2(Ω)-ortho-
projection onto Uad. With the particular choice
σ = 1/α this enables to eliminate ū from the
remaining system. This approach was proposed
by Hinze (2) and has the advantage that only ȳ, v̄
occur that are much smoother than ū. This fact
is important for the discretization and leads to
optimal convergence rates.

2. GENERAL PENALTIES

The well know idea of barrier-penalty methods is
to augment the objective by some term that pe-
nalizes either the closedness to the boundary of
Uad in case of interior point methods (for the log-
arithmic barrier see e.g. Weiser/Gänzler/Schiela
(3)) or the violation of the constraint in Uad

in case of pure penalties. In accordance with
the structure of Uad we consider the following
barrier-penalty modification

J̃(u, s) := Ĵ(u) +
∫

Ω
φ(u(x)− b(x), s)dx (7)

of the objective. Here s > 0 denotes the penalty
parameter that has to tend to 0 and φ : R → R
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denotes some barrier-penalty function that satis-
fies

∂

∂t
φ(t, s) = ψ

(
t

s

)
∀t ∈ domφ(·, s) (8)

with an appropriate function ψ : R → R.. For
finite dimensional optimization problems such a
general barrier-penalty class has been discussed
in Grossmann/Zadlo (1). Here we restrict us ei-
ther to the quadratic loss or to the smoothed exact
penalty defined by

ψ(t) := max{0, t} and ψ(t) := δ (1+
t√

1 + t2
).

respectively, were δ > 0 denotes some appro-
priate constant. For a detailed discussion of the
general assumption upon ψ as well as for fur-
ther types of barrier-penalty functions we refer
to Grossmann/Zadlo (1). Under mild additional
assumptions holds
Theorem For any s > 0 the penalty problem

J̃(u, s) → min! s.t. u ∈ L2(Ω) (9)

possesses a unique solution ū(s) and there holds
lim

s→0+
ū(s) = ū.

3. CONTROL REDUCTION

The treatment of the restrictions of the controls
in (9) by (7) leads to the necessary and sufficient
optimality condition

(ȳ − q, y)− a(y, v̄) = 0 ∀y ∈ V,
−a(ȳ, v) + (ū, v) = 0 ∀v ∈ V,

αū+ v̄ + ψ((ū− b)/s) = 0 a.e. in Ω.
(10)

For any s > 0 this system possesses a unique
solution (ȳ(s), v̄(s), ū(s)). The structure of the
considered functions ψ guarantee that from the
last equation the optimal control ū can be deter-
mined in dependence of v̄. Due to the regularity
v̄ ∈ H2(Ω) ↪→ C(Ω̄) of the adjoint this can be
done by pointwise elimination. Let denote this
by ū(s) = g(v̄(s), s). Thus, (10) leads to a para-
metric control reduced optimality system

(ȳ(s)− q, y)− a(y, v̄(s)) = 0 ∀y ∈ V,
−a(ȳ(s), v) + (g(v̄(s), s), v) = 0 ∀v ∈ V.

(11)

This forms a coupled system of weakly nonlinear
partial differential equations. There holds
Theorem For any s > 0 the system (11) pos-
sesses a unique solution (ū(s), v̄(s)) ∈ V × V

and ū(s) := g(v̄(s), s) forms the optimal solu-
tion of the parametric barrier-penalty problem
(9).
Since the optimal state ū as well as the optimal
adjoint state v̄ possess a higher regularity than
the optimal control ū problem (11) allows an ef-
ficient treatment by discretization techniques, e.g.
by finite elements. However, it has to be noticed
that the limit properties of barrier-penalty func-
tions asymptotically lead to ill-conditioned prob-
lems for s→ 0+. The details of these properties
are under investigation.

4. DISCRETIZATION

Conforming finite element discretizations Vh ⊂
V can be applied to the control reduced system
(11). This leads to the finite dimensional system
of nonlinear equations

(ȳh − q, yh)− a(yh, v̄h) = 0 ∀yh ∈ Vh,

−a(ȳh, vh) + (g(v̄h, s), vh) = 0 ∀vh ∈ Vh.
(12)

Like in the continuous case system (11) defines
uniquely the solution (ȳh(s), v̄h(s)) ∈ Vh × Vh.
Further, we obtain ūh(s) = g(v̄h(s), s) which
unlike in full discretization does not use an a-
priori discretization of the space U .

The analysis as well as numerical studies
related to this technique are done in coopera-
tion with the diploma students R.Meischner and
H.Kunz.
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1. INTRODUCTION

Let Ω ⊂ R
2 be a bounded domain with a smooth

boundary ∂Ω and corresponding unit outward

normal ν. For U = L2(Ω) we consider the opti-

mal control problem

min
u∈Uad

J(y(u), u) =
1

2
‖y−y0‖

2
L2(Ω)+

α

2
‖u−u0‖

2
U

subject to y(u) solving the elliptic PDE

Ay = u in Ω
∑2

i,j=1 aijyxi
νj = 0 on ∂Ω

and satisfying the pointwise state constraint

y(x) ≤ b(x) in the whole domain Ω. Further

we suppose Uad = {u ≤ d} with d denoting a

constant, A to be an elliptic differential operator,

α > 0, u0, y0 ∈ H1(Ω) and b ∈ W 2,∞(Ω) are

given.

2. FE–DISCRETIZATION

Let Th be a triangulation of Ω with vertices

x1, . . . , xm and let Xh denote the correspond-

ing space of linear, continuous finite elements.

The discrete optimization problem reads

min
u∈Uad

J(yh(u), u)

subject to yh(u) solving the discrete counter-

part of the elliptic PDE and yh(xj) ≤ b(xj)

for j = 1, . . . ,m. This represents a convex

infinite-dimensional optimization problem with

only finitely many equality and inequality con-

straints for the state.

3. LOCAL ERROR INDICATORS

We introduce the dual, control and primal resid-

ual functionals ρp, ρu and ρy determined by the
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Fig. 1. Adaptive mesh obtained by steering the local

refinement process via η.

discrete solution yh, uh, ph with control and state

multipliers λh and µh. In addition we define the

residual functional ρµ, respectively steming from

the complementarity conditions. We are now in

the position to formulate the analogue to (4, Thm.

1) for the state and control constrained case; there

holds

J(y, u) − J(yh, uh) =
1

2
ρp(y − ihy)+

+
1

2
ρy(p − ihp) +

1

2
ρµ(y, µ) +

1

2
ρu(u, λ)

with arbitrary quasi–interpolants ihy and ihp ∈

Xh. Based on this representation we define ap-

propriate local quantities ρp
T , ρy

T , ρµ
T , ρu

T on every

triangle T and obtain the error indicator

η :=
1

2

∑

T∈Th

ρp
T + ρy

T + ρµ
T + ρu

T .

4. NUMERICAL EXAMPLE

Let Ω = (0, 1) × (0, 1) be the unit square,

Uad = L2(Ω), A = −∆+Id and α = 1. The de-

sired control u0 and state y0 as well as the lower
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Fig. 2. Error in the objective functional for different

refinement strategies and numbers of vertices m.

bound b are taken from (1), where this prob-

lem already is investigated for uniform meshes.

We simulate the case, where the boundary of the

active set M = {(1
2 , x2) ∈ Ω} is not known

a–priori. Therefore we avoid having nodes along

M in the initial mesh. As can be seen from figure

1 our estimator provides adaptive meshes in the

neighbourhood of M . Furthermore the indicator

has the desired property of reducing the error in

the objective compared to global refinement (see

figure 2).

5. CONCLUSIONS

In order to generate goal-oriented meshes, we ex-

tend the DWR concept proposed by Becker and

Rannacher for PDE-constrained optimization to

the control and / or state constrained case. Us-

ing the augmented optimality system we obtain

a representation for the error in the objectives.

Based on this representation local error indica-

tors are defined. Their performance properties

are investigated by means of numerical examples.
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Primal-dual path-following methods for con-
strained minimization problems in function space
with low multiplier regularity are introduced and
analyzed. For this purpose let X1, X2, and W

be real Hilbert spaces with

X1 ↪→ L2(ω) ↪→ X∗
1 ,

where X∗
1 denotes the dual of X1 and ω a

bounded domain in Rm. Further set X =
X1 ×X2 and let x = (x1, x2) denote a generic
element in X .

Let E ∈ L(X, W ), f ∈ W , ψl, ψu ∈ X1,
and φl, φu ∈ X2. Further let J : X → R de-
note a quadratic functional such that there exists
a constant α > 0 with

〈J ′(x)− J ′(y), x− y〉X∗,X ≥ α|x− y|2X (1)

whenever E(x− y) = 0 for x, y ∈ X . Then the
problem under consideration is

minimize J(x) over x ∈ X

subject to Ex = f,

ψl ≤ x1 ≤ ψu,

φl ≤ x2 ≤ φu,

(P)

where ≤ denotes the ordering in L2(ω). By
duality theory, the Lagrange multiplier associ-
ated with the inequality constraint involving x1

is assumed to exhibit low regularity only, i.e., it
does not admit a pointwise interpretation. On the
other hand, the multiplier pertinent to φl ≤ x2 ≤
φu is supposed to be regular and the mapping
x2-to-adjoint state is assumed to be smoothing.

The regularization employed is of a general-
ized Moreau-Yosida-type (i.e., including a mul-
tiplier shift, which may yield feasibility of the

regularized solution with respect to the origi-
nal constraints) and yields regular approxima-
tions to low regularity multipliers of the original
problem. First the consistency of the regular-
ization is shown, and then regularity properties
of the path are discussed. In particular, under a
strict complementarity assumption differentiabil-
ity with respect to the path/regularization param-
eter is established. This property is useful in
devising highly efficient extrapolation schemes
within numerical solution algorithms. Further,
the path structure allows us to define approxi-
mating models, which are used for controlling
the path parameter in an iterative process for
computing a solution of the original problem.
This strategy turns out to be crucial in avoid-
ing potential ill-conditioning due to a rapid in-
crease of the path/regularization parameter. The
Moreau–Yosida regularized subproblems of the
new path-following technique are solved effi-
ciently by semismooth Newton methods. Due to
the regularization the latter method can be anal-
ysed successfully in function space. The overall
algorithmic concept is provided, and numerical
tests (including a comparison with primal-dual
path-following interior point methods) for simul-
taneously state and control constrained optimal
control problems show the efficiency of the new
concept.
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1. Introduction

Recent advances in optimization have reduced
the numerical costs of aerodynamic shape op-
timization considerably. By coupling the opti-
mization with the iterative flow solver in a so
called OneShot-Strategy, the cost of the opti-
mization has been reduced to be comparable to
a few forward simulation runs. To decrease the
costs even further, these studies are now extended
to the parameterization of the shape of the air-
craft.

Given the background of fast optimization
(Gherman and Schulz, 2005), both the conver-
gence speed and the best obtainable optimum so-
lution have to be considered. Because of the con-
flicting nature of these two criteria, local adaptiv-
ity using hierarchical and multi-level parameter-
izations will be inspected. Out of the multitude
of possible parameterizations (nurbs, B-splines,
free-form-deformation, ...), special attention is
given to the parameterization via Hicks-Henne
basis functions. This form of parameterization
- which is very often applied in the aerospace
industries - possesses inherent smoothing prop-
erties, which leads to the surprising behavior of
less optimization iterations with more design pa-
rameters.

By using an adjoint approach (Gauger, 2003)
for the computation of the gradients, the cost
does not scale with the number of design param-
eters. Therefore, a combination of a OneShot
optimization strategy (Hazra and Schulz, 2004,
2005) with a high number of Hicks-Henne func-
tions (Hicks and Henne, 1978) and adjoint based
gradients produces a very fast optimization rou-
tine.

Fig. 1. Hicks-Henne parameterization with 5 basis
functions

2. Parameterizations

Out of the multitude of possible parameteriza-
tions, special attention is given to the Hicks-
Henne functions on the one hand and a free node
parameterization on the other hand, because of

• frequent industrial applications
• decrease in optimization iterations with in-

creasing number of design parameters

Here, local adaptivity is a major issue:
Given the optimum solution q1 of a coarse

parameterization level q1 ∈ Rnq1 , one can rein-
terpret this as the optimum solution q2 = [q1, q̂]T

of a finer level with the additional constraint of
q̂ = 0. The Lagrange-Multiplier of this ad-
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ditional constraint, also known as the ”shadow
price”, can then be used as a measurement of
local adaptivity of the design space. By the use
of an adjoint based gradient, this technique has
proven to be computationally cheap, since the
gradient evaluation on the finer level does not
require any new flow solutions.

Using this technique, it is shown, that for
the best obtainable optimum solution for the 2D
RAE2822 airfoil, as few as 4-5 strategically well
placed Hicks-Henne functions are already suffi-
cient.

3. CONCLUSIONS

The parameterization has a major impact on both
algorithmic performance and the quality of the
obtainable optimum solution. Because of the in-
verse behavior of the number of design param-
eters and optimization iterations needed, special
attention is given to the Hicks-Henne parameter-
ization and its smoothing properties. Using a hi-
erarchical parameterization with an artificial ”pa-
rameterization constraint”, local adaptivity using
shadow prices will be shown.
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For numerous PDE-constraint optimization

problems, the underlying application yields very

large but also well-structured and sparse deriva-

tive matrices. However, there is also a wide

range of applications where the derivative ma-

trices have somehow orthogonal characteristics,

i.e., they are of rather small size but dense. Ex-

amples for such a setting are Periodic Adsorp-

tion Processes (PAPs) that consist of vessels or

beds packed with solid sorbent. The sorbent is

contacted with a multi-component fluid stream to

preferentially absorb one of the chemical compo-

nents onto the solid. Typical tasks for PAPs in-

clude vacuum swing adsorption to separate oxy-

gen from air, pressure swing adsorption to sep-

arate hydrogen from hydrocarbons in refinery

gases and simulated moving bed chromatogra-

phy to separate two isomers (e.g., glucose and

fructose) in the liquid phase. PAPs are typically

operated in a cyclic manner with each bed re-

peatedly undergoing a sequence of steps. These

cycle models consist of the bed models, PDAEs

in time and space, solved for each step. After

a relatively brief start-up period, the adsorption

beds run in a cyclic steady state, that is, the bed

conditions at the beginning of each cycle match

those at the end of the cycle. This fact yields

dense constraint Jacobians. As a consequence,

the run-time needed for an optimization may be

dominated significantly by the computation of the

dense Jacobian and its factorization.

This talk presents a trust-region SQP algo-

rithm for the solution of minimization problems

with nonlinear equality constraints. The pro-

posed approach does not require the exact eval-

uation of the constraint Jacobian or an iterative

solution of a linear system with a system matrix

that involves the constraint Jacobian. Instead the

algorithm presented here works only with an ap-

proximation of the constraint Jacobian. Hence, it

is well suited for optimization problems of mod-

erate size but with a special structure of the con-

straint Jacobian. The accuracy requirements for

the presented first-order global convergence re-

sult are based on the feasibility and the optimality

of the iterates. The corresponding criteria can be

verified easily during the optimization process to

adjust the approximation quality of the constraint

Jacobian.

Furthermore, we will discuss several possibil-

ities for providing the required derivatie informa-

tion. This includes a “black-box” application of

automatic differentiation to the time integration.

As alternative, one may apply semi-automatic ap-

proaches combining automatic differentiation and

more sophisticated integration algorithms pro-

vided for example by CVODES to evaluate the

direct sensitivity equation, the adjoint equation

and the second order adjoint equation.

Numerical results for various test problems

including a simple periodic adsorption process

are shown.
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1. SUMMARY

Our goal is to derive and investigate effective nu-
merical algorithms for the stabilization of flow
problems governed by the Navier Stokes equa-
tions around an unstable steady state solution w.

Linearizing the Navier Stokes equations for
the difference of w and the instationary solution
z, we obtain the so-called Oseen equations for
y = z−w. We want to minimize y by a boundary
feedback control. In particular, the control will
have a non-zero normal component.

Reformulating the equations allows us to ap-
ply Riccati theory and derive an algebraic Riccati
equation (ARE) from which we can calculate an
optimal control u.

For the numerical solution, we discretize the
system by a Galerkin finite element method. For
the solution of the ARE, we use a Newton-
based algorithm exploiting the structure of the
discretized operators.

2. THEORETICAL APPROACH

For the Oseen equations with a given stationary
solution w and the instationary solution y that we
want to stabilize, we can formulate an optimal
boundary control problem as follows:

inf{J(y, u) : (y, u) fulfill (1), u ∈ V 0,0(Σ)},

J(y, u) =
1
2

T∫
0

∫
Ω

|y|2 dx dt +
1
2

T∫
0

|u|2V 0(Γ)dt,

∂t y − 1
Re

∆y + (y · ∇)w + (w · ∇)y +∇p = 0,

div y = 0 in Q = Ω× (0, T ),

y = Mu on Σ = Γ× (0, T ),

y(0) = ζ in Ω.

(1)

M restricts the control u to a part of the bound-
ary, T > 0 can be finite or infinite, the divergence
free spaces

V 0(Γ) = {u ∈ L2(Γ) : div u = 0 in Ω,

< u · n, 1 >H−1/2(Γ),H1/2(Γ)= 0},

V 0,0(Σ) = L2(0, T ;V 0(Γ))

allow controls with a nonzero normal component.

Using the orthogonal Helmholtz projection

P : L2(Ω) → V 0
n (Ω),

V 0
n (Ω) = {u ∈ L2(Ω) : div u = 0 in Ω, u·n = 0},

the Dirichlet operator DA defined by DAw = v

iff

λv − 1
Re

∆v + (w · ∇)v + (v · ∇)w +∇π = 0,

div v = 0 in Ω,

v = w on Γ,

and the boundary projectors

γnu = (u · n)n, γτu = u− γnu,

in (5) Raymond derives the equivalent problem

inf{I(y, u) : (y, u) fulfill (2), u ∈ V 0,0(Σ)},

48



I(y, u) =
1
2

T∫
0

(|Py|2L2(Ω) + |R1/2
A γnu|2V 0(Γ)

+ |γτu|2V 0(Γ)) dt,

Py′ = APy + BMu in (0,∞),

Py(0) = ζ,

(I − P )y = (I − P )DAMγnu,

(2)

where

Ay =
1

Re
P∆y − P ((w · ∇)y)− P ((y · ∇)w),

B = (λI −A)PDA and
RA = MD?

A(I − P )DAM + I.

To this problem, we can apply Riccati optimal
control theory. We solve the ARE

A?Π + ΠA−ΠBτM
2B?

τΠ

+ ΠBnMR−1
A MB?

nΠ + I = 0

for Π = Π? ≥ 0, define the feedback control

u = −MB?
τΠPy −R−1

A MB?
nΠPy

and get the stabilized solution from (2).

This theory can be extended to the fully non-
linear equation with the additional term (y ·∇)y,
and the stabilization can even be made exponen-
tial such that, if the initial perturbation y(0) = ζ

is small enough,

∃ C, ω > 0 : ||y(t)|| ≤ C e−ωt.

3. NUMERICAL REALIZATION

We will demonstrate the Riccati-based approach
for a standard benchmark problem in flow con-
trol: the backward facing step. Here the goal
is to minimize the vorticity behind the step by
applying a Dirichlet boundary control.

We are going to use the Taylor-Hood finite el-
ement Galerkin space discretization from which
we will get n-dimensional approximations of the
state equations and the ARE.

Solving the ARE is a numerical challenge due
to the size of the solution matrix Πh ∈ IRn×n.
We are going to use a low-rank Cholesky approx-
imation Π ≈ ZhZT

h with Zh ∈ IRn×r, r � n,

and compute Zh by a variant of Newton’s method
for AREs. Our algorithms exploit the structure
of the coefficient matrices by alternating direc-
tion iteration methods such that the complexity
of each Newton step is reduced from O(n3) to
the complexity for solving the stationary Stokes
problem (3; 4).

For the solution of the differential equations,
we use the finite element based solver NAVIER
(2). It comprises coupling with energy and
species transport, phase change problems and
capillary free boundary conditions, for example.
There are versions for 2d and 3d.
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Multiperiod risk functionals for discrete-time

stochastic processes with adapted filtration are

considered which satisfy monotonocity, trans-

lation equivariance and convexity properties.

Dual representations of such risk functionals

are derived and various examples are discussed

(4). The class of polyhedral multiperiod risk

functionals, their incorporation into multistage

stochastic programs and their stability properties

are discussed in more detail (1; 3). Finally, we

present a case study for applications of multi-

period risk functionals in electricity risk man-

agement (see also (2)).
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1. STOCHASTIC DOMINANCE

In the stochastic dominance approach random

variables are compared by pointwise compari-

son of some performance functions constructed

from their distribution functions. Let X be a ran-

dom variable representing some returns. The first

performance function F1(X, r) is defined as the

right-continuous cumulative distribution function

itself: F1(X, r) = P[X ≤ r] for r ∈ R. We say

that X weakly dominates Y under the FSD rules

(X �
F SD

Y ), if F1(X, r) ≤ F1(Y, r) for all

r ∈ R, and X FSD dominates Y (X ≻
F SD

Y ), if

at least one strict inequality holds. Actually, the

stochastic dominance is a stochastic order thus

defined on distributions rather than on random

variables themselves. Nevertheless, it is a com-

mon convention, that in the case of random vari-

ables X and Y having distributions PX and PY ,

the stochastic order relation PX � PY might be

viewed as a relation on random variables X � Y

(Müller and Stoyan, 2002).

The second degree stochastic dominance rela-

tion is defined with the second performance func-

tion F2(X, r) given by areas below the cumula-

tive distribution function itself, i.e.: F2(X, r) =
∫ r

−∞ F1(X, t)dt for r ∈ R. Similarly to FSD, we

say that X weakly dominates Y under the SSD

rules (X �
SSD

Y ), if F2(X, r) ≤ F2(Y, r) for all

r ∈ R, while X SSD dominates Y (X ≻
SSD

Y ),

when at least one inequality is strict. Cer-

tainly, X ≻
F SD

Y implies X ≻
SSD

Y . Func-

tion F2(X, r), used to define the SSD relation

can also be presented as follows (Ogryczak and

Ruszczyński, 1999): F2(X, r) = E[max{r −

∗Partial financial support from The Ministry of Science

and Information Society Technologies under grant 3T11C

005 27.

X, 0}], thus representing the mean below-target

deviations from real targets.

Alternatively, the stochastic dominance or-

der can be expressed on the inverse cumulative

functions (quantile functions) (Wang and Young,

1998). Namely, for random variable X, one may

consider the performance function F−1(X, p) de-

fined as is the left-continuous inverse of the

cumulative distribution function F1(X, r), i.e.,

F−1(X, p) = inf {η : F1(X, η) ≥ p}. Ob-

viously, X dominates Y under the FSD rules

(X ≻
F SD

Y ), if F−1(X, p) ≥ F−1(Y, p) for

all p ∈ [0, 1], where at least one strict inequal-

ity holds. Further, the second quantile function

(or the so-called Absolute Lorenz Curve ALC)

is defined by integrating F−1 as F−2(X, p) =
∫ p

0 F−1(X,α)dα for 0 < p ≤ 1. Actually,

as shown in (Ogryczak and Ruszczyński, 2002),

F−2(X, p) = maxr∈R [pr − F2(X, r)]. Hence,

by the theory of convex conjugate (dual) func-

tions, the pointwise comparison of ALCs pro-

vides an alternative characterization of the SSD

relation in the sense that X �
SSD

Y if and only

if F−2(X,β) ≥ F−2(Y, β) for all 0 < β ≤ 1.

If X ≻
SSD

Y , then X is preferred to Y

within all risk-averse preference models that pre-

fer larger outcomes. In terms of the expected

utility theory the SSD relation represent all the

preferences modeled with increasing and con-

cave utility functions. It is therefore a mat-

ter of primary importance that a stochastic op-

timization model be consistent with the second

degree stochastic dominance relation. However,

in many applications one may deserve stronger

risk averse. The classical higher degree stochas-

tic dominance relations no longer maintain the

equivalence of the primal and dual (inverse) mod-

els. This paper introduces a concept of the
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primal-dual higher degree stochastic dominance

which preserve the equivalence of the primal and

inverse dominance relations.

2. PRIMAL-DUAL TSD

Classical higher degree stochastic dominance re-

lations depend on performance functions derived

by integrating those of lower degrees. The third

function F3(X, r) is given by integrating F2, i.e.:

F3(X, r) =
∫ r

−∞ F2(X, t)dt for r ∈ R and it

can also be presented as follows (Ogryczak and

Ruszczyński, 2001): F3(X, r) = E[max{r −

X, 0}2]/2, thus representing the mean square

below-target deviations from real targets. The

kth function Fk(X, r) is defined as: Fk(X, r) =
∫ r

−∞ Fk−1(X, t)dt for r ∈ R. Similarly to

FSD and SSD, we say that X weakly domi-

nates Y under the kSD rules (X �
kSD

Y ), if

Fk(X, r) ≤ Fk(Y, r) for all r ∈ R. Certainly,

X ≻
(k−1)SD

Y implies X ≻
kSD

Y . One may

also consider the higher degree quantile perfor-

mance functions (Muliere and Scarsini, 1989). In

particular, the third quantile function is defined

by integrating as F−3(X, p) =
∫ p

0 F−2(X,α)dα

for 0 < p ≤ 1, while higher degree functions

can respectively be built. Although, already the

third degree inverse SD relation, X �
TISD

Y

iff F−3(X, p) ≥ F−3(Y, p) for all 0 < p ≤ 1,

is not equivalent to the primal TSD. Moreover,

function F−3 is neither monotonic nor convex as

already F−2 is not always monotonic.

In order to build a primal-dual third degree

stochastic dominance concept we need to nor-

malize the corresponding second performance

functions prior to their integration. We in-

troduce a nondecreasing performance function

H2(X, .) : R → [0, 1] and its generalized inverse

H−2(X, .) = H−1
2 (X, .) such that X �

SSD
Y iff

H2(X, r) ≤ H2(Y, r) for all r ∈ R, and equiva-

lently H−2(X, p) ≥ H−2(Y, p) for all 0 < p ≤ 1.

In other words, we introduce alternative per-

formance functions similar to a cdf and its in-

verse, respectively, but defining the second de-

gree stochastic dominance instead of the FSD.

The simplest way to define such performance

functions is

H2(X, η) = sup{p : F2(X, η + ξ) ≥ pξ ∀ξ≥0}

H−2(X, p) = inf{η : F−2(X, p) ≤ pη }

When introducing the set of random variables

Q(η, p) = {Z : P[Z < η] = 0, P[Z ≤

η] ≥ p} the functions can be interpreted as fol-

lows. H2(X, η) represents then the largest p such

that X̂ �
SSD

X for some X̂ ∈ Q(η, p) while

H−2(X, p) represents the smallest η such that

X̂ �
SSD

X for some X̂ ∈ Q(η, p).

By integration we get the third degree perfor-

mance functions H3(X, r) =
∫ r

−∞ H2(X, t)dt

for r ∈ R and H−3(X, p) =
∫ p

0 H−2(X,α)dα

for 0 < p ≤ 1, respectively. Such functions

are convex and they form a pair of conjugate

functions. This allows us to define the third de-

gree primal-dual stochastic dominance (TPDSD)

as X �
TPDSD

Y iff H3(X, r) ≤ H3(Y, r) for all

r ∈ R, and equivalently H−3(X, p) ≥ H−3(Y, p)

for all 0 < p ≤ 1. Obviously, X �
SSD

Y implies

X �
TPDSD

Y , but not vice versa. Similar ap-

proach one may apply to construct higher degree

primal-dual stochastic dominance relations.

Various risk averse models can be build

by using TPDSD performance functions as op-

timization criteria. Note that H−2(X, p) =

F−2(X, p)/p thus representing the TailVaR risk

measures (known also as Average VaR or Con-

ditional VaR). There is no simple formula for

H2(X, r). Nevertheless, for both H−3(X, p) and

H3(X, r) the corresponding integral approxima-

tions can be quite easily defined.

This paper presents initial analysis of the

TPDSD relation and corresponding risk averse

optimization models.
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1. INTRODUCTION

In our earlier publications (Dentcheva and
Ruszczyński, 2003, 2004) we have introduced and
analyzed the following optimization model with
stochastic dominance constraints:

max E
[
H(z)

]
s.t. G(z) �(2) Y,

z ∈ Z0.

In this problem Z0 is a convex closed subset of a
Banach space Z , and G and H are continuous op-
erators from Z to the space of integrable random
variables L1(Ω, F , P). The random variable Y
plays the role of a benchmark outcome. For exam-
ple, one may set Y = G(z̄), where z̄ ∈ Z0 is some
reasonable value of the decision vector, which is
currently employed in the system.

The relation �(2) is the stochastic dominance
relation of the second order. It is defined as fol-
lows: A random variable X dominates another
random variable Y in the second order, if

E[u(X)] ≥ E[u(Y )]

for every concave nondecreasing function u(·), for
which these expected values are finite.

Our objective is to extend this model to a dy-
namic setting, with G(z) representing a random
sequence, rather than a scalar random variable.
We are interested in modeling risk aversion in a
stochastic control problem for a discrete-time lin-
ear dynamic system governed by the equations:

st+1 = At st + Btvt + et , t = 1, . . . , T .

Here st denotes the state vector at time t and vt

denotes the control vector. The vectors et and the
matrices At and Bt are random. The initial state
s1 is given.

Assume that the random outcomes X t , repre-
senting the performance measures of the system
at t = 1, . . . , T + 1, are scalar and given by

X t(ω) = gt(st(ω), vt(ω)), for t = 1, . . . , T,

XT +1(ω) = gT +1(sT +1(ω)), ω ∈ Ω.

The functions gt : R
ns ×R

nv → R are concave.
We adopt the convention that larger values of

X t are preferred; for example, X t may represent
profits at time t .

Our goal is to model risk aversion in this prob-
lem by using stochastic orders. To this end we
compare the multivariate distribution of the re-
wards (X1, X2, . . . , XT +1) with the distribution
of some benchmark outcomes (Y1, Y2, . . . , YT +1).
We shall add to the problem formulation an appro-
priate stochastic ordering constraint.

2. STOCHASTIC DOMINANCE FOR
RANDOM SEQUENCES

Consider random vectors (X1, . . . , XT +1) and
(Y1, . . . , YT +1). The simplest way to define a
stochastic ordering relation X �

sep
(2) Y between

these vectors, is to require the stochastic domi-
nance relation for each coordinate

X t �(2) Yt , t = 1, . . . , T + 1.

The analysis in our earlier paper (Dentcheva and
Ruszczyński, 2004) includes this case. This ap-
proach, however, ignores the temporal structure
and the dependency between the coordinates of
the vector (X1, . . . , XT +1).

Therefore, we are taking a different approach,
by considering discounted sums of the rewards,∑T +1

t=1 %t X t , and the corresponding discounted
sums of the benchmark:

∑T +1
t=1 %t Yt . The se-

quence of discount factors {%t} is assumed to be-
long to a compact set D , where

D ⊆
{
% ∈ R

T +1
: 1 ≥ %1 ≥ · · · ≥ %T +1 ≥ 0

}
.
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DEFINITION. A sequence (X1, . . . , XT +1) dom-
inates a sequence (Y1, . . . , YT +1) in the discounted
second order, if for all % ∈ D the relation

T +1∑
t=1

%t X t �(2)

T +1∑
t=1

%t Yt

is satisfied.
We denote this relation by X �

dis
(2) Y . The dis-

counted order �
dis
(2) neither implies nor is implied

by the coordinate order.

3. OPTIMALITY CONDITIONS

We introduce the following stochastic dynamic
optimization problem with discounted dominance
constraints:

max
T∑

t=1

EG t(st , vt) + EGT +1(sT +1)

s.t. st+1 = At st + Btvt + et , t = 1, . . . , T,

(G1(s1, v1), . . . , G1(sT , vT ), GT +1(sT +1))

�
dis
(2) (Y1, . . . , TT , YT +1)

vt ∈ Vt a.s., t = 1, . . . , T .

We introduce a class Φ of concave nondecreasing
functions ϕ : R

T +1
→ R; they will play a role of

Lagrange multipliers associated with the ordering
constraint. In the talk we shall precisely define the
class Φ.

The following functional plays the role of a
partial Lagrangian associated with our problem:

L(s, v, ϕ) = E
[ T∑

t=1

G t(st , vt) + GT +1(sT +1)

+

(
ϕ(G1(s1, v1), . . . , GT (sT , vT ), GT +1(sT +1))

− ϕ(Y1, . . . , YT , YT +1)
)]

.

The main contributions of the work are the fol-
lowing.

Under an appropriate constraint qualification
condition, the pair (ŝ, v̂) constitutes the optimal
state–control pair of the problem if and only if
there exists a utility function ϕ̂ ∈ Φ such that
(ŝ, v̂) is also the optimal state–control pair in an
auxiliary control problem having L(s, v, ϕ̂) as its
objective functional.

Moreover, a duality relation holds true: the
function ϕ̂ is the worst among all functions ϕ ∈ Φ,

that is, the maximal value of L(·, ·, ϕ) in the aux-
iliary problem is the smallest, when ϕ = ϕ̂.

From these relations one can derive a version
of the maximum principle for problems with dom-
inance constraints, and the existence of a random
discount process in the original problem.
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1. OPTIMIZATION PROBLEMS
WITH STOCHASTIC ORDER-
ING CONSTRAINTS

In stochastic optimization the decisions affect
various random outcomes. The relation of
stochastic dominance is a way to formalize pref-
erences among random outcomes. The notion
of stochastic ordering (or stochastic dominance
of first order) has been introduced in statistics
in and further applied and developed in eco-
nomics. It is defined as follows. For a random
variable X we consider its distribution function,
F (X; η) = P[X ≤ η], η ∈ R. We say that a
random variable X dominates in the first order
a random variable Y if

F (X; η) ≤ F (Y ; η) for all η ∈ R.

We denote this relation X �(1) Y .
Let g : Rn × Rs → R be continuous with

respect to both arguments, and let V be an s-
dimensional random vector, defined on a certain
probability space (Ω,F , P). For every z ∈ Rn

Xz(ω) = g(z, V (ω)), ω ∈ Ω

is a random variable. Given a benchmark ran-
dom variable Y (defined on the same probability
space), an optimization model with first order
stochastic dominance constraint is formulated as
follows:

min f(z)

s.t. Xz �(1) Y,

z ∈ Z,

where f : Rn → R and Z ⊂ R
n. We can

express the dominance constraint as a continuum
of probabilistic constraints:

P
[
g(z, V ) ≥ η

]
≥ P

[
Y ≥ η

]
, η ∈ R.

In financial mathematics the corresponding con-
cept is that of Value-at-Risk (VaR), which is
defined as the maximum loss at a specified con-
fidence level p. It corresponds to the largest
p-quantile of the random variable X represent-
ing gains, whereas we use here the smallest
p-quantile. Our analysis can be adapted in a
straightforward way to this case.

Problems with stochastic dominance con-
straints are new optimization models involv-
ing risk aversion introduced in (Dentcheva and
Ruszczyński, 2003, 2004). As problems with
a continuum of constraints on probability, they
pose specific analytical and computational chal-
lenges. The probabilistic nature of the problem
prevents the direct application of the theory of
semi-infinite optimization. On the other hand,
the specific structure of dominance constraints
is significantly different from the structure of
finitely many probabilistic constraints.

2. STABILITY AND SENSITIV-
ITY

We introduce the measures µ0 on Rs and ν0 on
R induced by V and Y . For all Borel sets A ⊂
R

s and B ⊂ R:

µ0(A) = P[V ∈ A],

ν0(B) = P[Y ∈ B].

We denote the set of probability measures onRm

by P(Rm).
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Furthermore, we introduce the multifunction
H : Rn ×R⇒ R

s defined by

H(z, η) := {v ∈ Rs : g(z, v) ≥ η}.

We consider the following parametric optimiza-
tion problem:

min f(z)

s.t. µ(H(z, η))− ν([η,∞)) ≥ 0 ∀η ∈ [a, b],

z ∈ Z,
(1)

with parameters µ ∈ P(Rs) and ν ∈ P(R).
The original problem is obtained when (µ, ν) =
(µ0, ν0). Our aim is to study the stability of solu-
tions and of the optimal value to (1) under small
perturbations of the underlying distributions µ0

and ν0.
For this purpose we equip the space P(R)

with the Kolmogorov distance function:

α1(ν1, ν2) = sup
η∈R

|ν1([η,∞))− ν2([η,∞))| .

To introduce a distance function on P(Rs),
which is appropriate for our problem, we define
the family of sets:

B := {H(z, η) : z ∈ Z, η ∈ [a, b]}∪{v+Rs
− : v ∈ Rs}.

The distance function on P(Rs) is defined as
the discrepancy

αB(µ1, µ2) := sup
B∈B

|µ1(B)− µ2(B)| .

On the product space P(Rs)×P(R) we intro-
duce the natural distance:

α((µ1, ν1), (µ2, ν2)) := max{αB(µ1, µ2), α1(ν1, ν2)}.

Note that α is a metric, because the measures are
compared, in particular, on all the cells of form
z +Rs

− and (−∞, η), respectively.
We consider the constraint set mapping Φ :

P(Rs)×P(R) ⇒ R
n, which assigns to every

parameter (µ, ν) the feasible set of problem (1),
i.e.,

Φ(µ, ν) :=
{
z ∈ Z : µ(H(z, η))−ν([η,∞)) ≥ 0 ∀η ∈ [a, b]

}
.

Furthermore, we define the optimal value func-
tion, ϕ : P(Rs)×P(R) → R, of problem (1)
as follows:

ϕ(µ, ν) := inf
{
f(z) : z ∈ Φ(µ, ν)

}
.

The solution set mapping ΨU : P(Rs) ×
P(R) ⇒ R

n of problem (1) is defined by

Ψ(µ, ν) :=
{
z ∈ Φ(µ, ν) : f(z) = ϕ(µ, ν)

}
.

W report results from (Dentcheva et.al., 2007)
We establish the closedness of the feasible set
mapping, and we obtain stability results for the
optimal value, for the feasible set, and for the
solution set mappings. We analyze the sensitiv-
ity of the optimal value function and we obtain
bounds for its directional derivatives.
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Given a bounded open subset D of dR , there exists a quasi-open subset of D minimizing the k-th 
eigenvalue of the Dirichlet-Laplacian operator with prescribed Lebesgue measure. A natural question 
concerns the regularity of this optimal set and of the corresponding optimal eigenfunction. We will 
recall the situation for the first eigenvalue in which case regularity essentially holds. The question is 
harder for the other eigenvalues. We will describe some progress in this direction. 
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Institut Élie Cartan Nancy,
UMR 7502 Nancy-Université - CNRS - INRIA
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1. INTRODUCTION

I will present a common work with Gérard
Philippin from Laval University, Québec. In this
talk, we are interested in various combinations of
moment of inertia with respect to the coordinate
axes.

Let Ω be a domain in RN , Γ its boundary
and let us introduce the following notation, where
X = (x1, x2, . . . , xN ):

• Ji(Ω) :=
∫
Ω x2

i dX and ji(Γ) :=
∫
Γ x2

i dσ,
• JO(Ω) :=

∑N
i=1 Ji(Ω) =

∫
Ω |X|2 dX and

jO(Γ) :=
∑N

i=1 ji(Γ) =
∫
Γ |x|2 dσ,

• J(Ω) := ΠN
i=1Ji(Ω) and j(Γ) := ΠN

i=1ji(Γ).

We are interested in minimizing the four func-
tionals JO, jO, J , j on the class of admissi-
ble domains with given volume: O := {Ω ⊂
RN , |Ω| = c}.

2. MINIMIZING JO and jO

We will show that:
Theorem 1: The ball minimizes JO.
We use classical rearrangement argument like in
[4].

Theorem 2: The ball minimizes jO.
This is a simple consequence of a more gen-
eral isoperimetric inequality due to Betta, Brock,
Mercaldo, Posteraro, see [1].

3. MINIMIZING J and j

Concerning the products of moment of inertia,
we show:
Theorem 3: The ellipsoids minimize J .
This result is due to W. Blaschke, see [2] but
can also be recovered by a simple topological
derivative argument.

Theorem 4: The disk minimizes j in dimension
2.
We will mainly focus on the proof of this result
which seems to be original. Let us remark that
the result is unknown in higher dimension.

4. APPLICATION TO A
STEKLOV EIGENVALUE
PROBLEM

A consequence of Theorem 4 is a new proof of
the following Theorem due to J. Hersch, L.E.
Payne, M.M. Schiffer, see [3]:
Theorem 5: Let 0 = p1(Ω) ≤ p2(Ω) ≤ p3(Ω)
be the first eigenvalues of the Steklov problem:

{
∆u = 0 in Ω
∂u
∂n = pu on Γ ,

where Ω is a bounded Lipschitz open set and Γ
its boundary.
Then, the disk maximizes the product
p2(Ω)p3(Ω) among plane open sets of given
area.
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Let Ω ⊂ R2 be a bounded and sufficiently
smooth domain. Let ψ ∈ H2(Ω) with 0 < ψ ≤
M on ∂Ω, and let f ∈ L2(Ω). We consider the
obstacle problem

minimize 1
2‖∇y‖2

L2 − (f, y)L2

subject to y ∈ K,
(1)

with

K := {y ∈ H1
0 (Ω) : y ≤ ψ}.

Above (·, ·)L2 denotes the usual L2(Ω)-inner
product. Under these assumption, the first order
necessary and sufficient condition for optimality
of y∗ ∈ H1

0 (Ω) is given by

−∆y∗ + λ∗ = f in Ω, y∗ = 0 on ∂Ω,

λ∗ = max(0, λ∗ + c(y∗ − ψ)) a.e. in Ω,

where c > 0 is arbitrarily fixed. Although λ∗ is
sufficiently regular, i.e., it admits a pointwise al-
most everywhere interpretation, algorithms such
as semismooth Newton methods exhibit a mesh
dependent behavior.

In order to overcome this mesh dependence,
we propose a change of paradigm by considering
the active and respectively inactive sets

A∗ = {y∗ = ψ},
I∗ = Ω \ A∗,

as the unknowns inducing a state y∗ with asso-
ciated Lagrange multiplier λ∗. This allows us to
reformulate (1) as a shape respectively topology
optimization problem. In fact, we consider

minimize J(A, I) over A, I ⊂ Ω (2)

instead of (1), where J = α1J1 + α2J2 + α3J3

with positive weights αi and

J1(I) =
∫

I
max(0, ũ)dx,

J2(A) =
∫

A
max(0, ṽ)dx,

J3(I) =
N∑

i=2

|Ii|−1

(∫

Ii

gdx

)2

.

Here we assume I =
⋃N

i=1 Ii with Ii simply
connected. Further, g = f +∆ψ, and ũ = u−ψ,
ṽ = v − ψ solve

−∆u = ḡ in Ii, ∂nũ = 0 on ∂Ii,

with ḡ = g − |Ii|−1
∫
Ii

gdx and a suitable mod-
ification if ∂Ii ∩ ∂Ω 6= ∅, and

−∆v = −∆ψ in A, v = u on ∂A.

We employ the concept of topological
sensitivity as introduced by Sokolowski and
Żochowski (1) in order to compute a descent di-
rection for J . When topological stationarity is
reached, the shape gradient is used for locally
adjusting the shape of the active set A. Numer-
ically the latter step is realized by employing a
level set methodology. Numerical results includ-
ing a comparison with a primal-dual active set
solver will be presented.
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1. Introduction

The shape optimization for compressible Navier-
Stokes equations is an important branch of the re-
search, e.g. in aerodynamics. The main difficulty
in analysis of such problems is the lack of the
existence results for inhomogeneous boundary
value problems in bounded domains (cf. Plot-
nikov et al, 2007). The authors proved the ex-
istence of an optimal shape for drag minimisa-
tion in three spatial dimensions under the Mosco
convergence of admissible domains and assum-
ing that the family of admissible domains is
nonempty. This is in fact a result on the com-
pactness of the set of solutions to Navier-Stokes
equations for the admissible family of obstacles,
we refer the reader to Plotnikov et al, 2006a for
details. The shape differentiability of solutions
with respect to boundary perturbations is shown
in Plotnikov et al, 2006b, and leads to the opti-
mality system for the shape optimisation problem
under considerations.

2. Compressible, stationary, Navier-
Stokes equations.

Inhomogeneous boundary value problems for
compressible, stationary Navier-Stokes equations
are considered. In particular, the well-posedness
for inhomogeneous boundary value problems of
elliptic-hyperbolic type is shown. Analysis is
performed for small perturbations of the ap-
proximate solutions, which are determined from
Stokes problem. The existence and uniqueness
of solutions close to approximate solution are
proved, and in addition, the differentiability of

solutions with respect to the coefficients of dif-
ferential operators is shown. The results on the
well-posedness of nonlinear problem are interest-
ing on its own, and are used to obtain the shape
differentiability of the drag functional for incom-
pressible Navier-Stokes equations. The shape
gradient of the drag functional is derived in the
classical and useful for computations form, an
appropriate adjoint state is introduced to this end.
The shape derivatives of solutions to the Navier-
Stokes equations are given by smooth functions,
however the shape differentiability is shown in a
weak norm. The method of analysis proposed in
the paper is general, and can be used to establish
the well-posedness for distributed and boundary
control problems as well as for inverse problems
in the case of the state equations in the form
of compressible Navier-Stokes equations. The
differentiability of solutions to the Navier-Stokes
equations with respect to the data leads to the
first order necessary conditions for a broad class
of optimization problems.

3. Drag minimisation.

We present an exemple of shape optimization in
aerodynamics. Mathematical analysis of the drag
minimization problem for compressible Navier-
Stokes equations can be found in Plotnikov et
al., 2006a, 2006b.

PDE model. We assume that the viscous
gas occupies the double-connected domain Ω =
B\S, where B ⊂ R3, is a hold-all domain with
the smooth boundary Σ = ∂B , and S ⊂ B is a
compact obstacle. Furthermore, we assume that
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the velocity of the gas coincides with a given
vector field U ∈ C∞(R3)3 on the surface Σ. In
this framework, the boundary of the flow domain
Ω is divided into the three subsets, inlet Σin, out-
going set Σout, and characteristic set Σ0, which
are defined by the equalities

Σin = {x ∈ Σ : U · n < 0},
Σout = {x ∈ Σ : U · n > 0},
Σ0 = {x ∈ ∂Ω : U · n = 0},

where n stands for the outward normal to ∂Ω =
Σ∪∂S. In its turn the compact Γ = Σ0∩Σ splits
the surface Σ into three disjoint parts Σ = Σin ∪
Σout∪Γ. The problem is to find the velocity field
u and the gas density % satisfying the following
equations along with the boundary conditions

∆u + λ∇div u = R%u · ∇u +
R

ε2
∇p(%) in Ω,

div (%u) = 0 in Ω,

u = U on Σ, u = 0 on ∂S,

% = %0 on Σin,

where the pressure p = p(%) is a smooth, strictly
monotone function of the density, ε is the Mach
number, R is the Reynolds number, λ is the vis-
cosity ratio, and %0 is a positive constant.
Drag minimization. One of the main applications
of the theory of compressible viscous flows is
the optimal shape design in aerodynamics. The
classical sample is the problem of the minimiza-
tion of the drag of airfoil travelling in atmo-
sphere with uniform speed U∞. Recall that in
our framework the hydro-dynamical force acting
on the body S is defined by the formula,

J(S) = −
∫

∂S
(∇u + (∇u)∗

+(λ− 1)div uI− R

ε2
pI) · ndS .

In a frame attached to the moving body the drag
is the component of J parallel to U∞,

JD(S) = U∞ · J(S), (2)

and the lift is the component of J in the direction
orthogonal to U∞. For the fixed data, the drag
can be regarded as a functional depending on the
shape of the obstacle S. The minimization of the

drag and the maximization of the lift are between
shape optimization problems of some practical
importance.

We present first of all the result on the exis-
tence of the optimal shape in three spatial dimen-
sions. Then we show the shape differentiability
of the drag functional with respect to the bound-
ary variations. The proof of the results are given
in Plotnikov et al. 2006a and 2006b.

4. CONCLUSIONS

The modelling and shape optimization for the
compressible Navier-Stokes equations is a new
field of applications for the theory of non lin-
ear PDE’s. We present some new results for the
stationary case.

We point out the following aspects of pro-
posed method of analysis of compressible Navier-
Stokes equations which seems to be our original
contribution.
• Extended form of the governing equations

which allows to cope with the so-called mass
control problem.

• The splitting of the boundary value problem
for the transport equation into two parts: the
local problem in the vicinity of inlet, and the
global problem with the modified vector field
ũ and the empty inlet Σ̃in.

• The estimates of solutions to the model prob-
lem for the transport in the fractional Sobolev
spaces, which can not be obtained by the in-
terpolation method.

• The very weak formulation of linearized equa-
tions introduced to assure the existence of
shape derivatives.
In this way we obtain the shape gradients

of the drag functional for compressible Navier-
Stokes equations.
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1. MOTIVATION

Free Material Optimization (FMO) has proven
to be an efficient approach to the problem of fin-
ding the ultimatively best material for an elastic
continuum structure subjected to given loads and
boundary conditions (1), (2). Due to the under-
lying physical model describing the elastic beha-
viour of solid bodies, the original FMO approach
is not applicable to thin-walled structures, as they
frequently appear in the optimization of airplanes
and cars. In this paper Free Material Optimizati-
on based on an elastic shell model is proposed.

2. SINGLE LOAD PROBLEM

The elastic behaviour of the shell body is descri-
bed by Naghdi’s shell model (3). The shell is in-
terpreted as a surface ω with a director vector at-
tached to each point. Two types of displacements
are considered: the displacement of the point at
the surface u ∈ [

H1(ω)
]3 and the rotation of the

director vector θ ∈ [
H1(ω)

]2. Rotations of the
director vector around it’s own axis are not taken
into account:

U(ξ1, ξ2, ξ3) = u(ξ1, ξ2)+ξ3θλ(ξ1, ξ2)aλ(ξ1, ξ2)

where ξi, i = 1, 2, 3 are the curvilinear coordi-
nates of the shell surface and aλ, λ = 1, 2 is the
contravariant basis. The boundary Γ of the de-
sign space is divided into two parts: Γ = Γ0∪Γ1,
where Γ0 ∩ Γ1 = ∅. The set of admissible dis-
placements is given by

U :=
{
(u, θ) ∈ H1(ω;R3)

∣∣
θ · a3 = 0 ; u = θ = 0 on Γ0}

It is now possible to deduce the formulas for the
appearing membrane, bending and shear strains

γαβ(u) =
1
2

(
uα|β − uβ|α

)− bαβu3 ,

χαβ(u, θ) =
1
2

(
θα|β − θβ|α − bλ

βuλ|α

− bλ
αuλ|β

)
+ cαβu3 ,

ζα(u, θ) =
1
2

(
θα + u3,α + bλ

αuλ

)
.

In the plate case the midsurface ω has no cur-
vature, hence bαβ and cαβ vanish (4). Thus the
potential energy of the Naghdi shell reads as

Π((u, θ), (Cαβµλ, Dαλ)) :=
1
2

∫

ω

[
tγαβCαβµλγµλ +

t3

12
χαβCαβµλχµλ

+ tζαDαλζλ

]
dS −

∫

Γ1

(g · u + m · θ)dl

where Cαβµλ and Dαλ are the elasticity tensors
of the shell, t is its thickness and g and m are
applied forces and moments, respectively. Body
forces are neglected. The potential energy can
be reformulated by writing material and strain
tensors as matrices and vectors:

Π((u, θ), (C, D)) =
∫

ω

[
t

2
γ>Cγ +

t3

24
χ>Cχ

+
t

2
ζ>Dζ

]
dS −

∫

Γ1

(g · u + m · θ)dl

The minimum of the potential energy indicates
the equilibrium state

min
(u,θ)∈U

Π((u, θ), (C,D))

Now the optimization problem can be formu-
lated. The stiffest structure possible is found
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by minimizing the compliance J((u, θ), (C,D)),
which is given by the negative potential energy:

min
(C,D)∈C

max
(u,ϑ)∈U

J((u, θ), (C, D)) =

− 1
2

∫

ω

[
tγ>Cγ +

t3

12
χ>Cχ

+ tζ>Dζ
]
dS +

∫

Γ1

(g · u + m · θ)dl

The admissible elasticity tensors (C, D) ∈
L∞(ω) have to be symmetric and positive se-
midefinite: C = C> º 0, D = D> º 0,
are subjected to a resource limit

∫
ω tr(C(x)) +

tr(D(x)) dx ≤ V and have to satisfy the cons-
traints tr(C(x)) ≤ c+, tr(D(x)) ≤ d+ preven-
ting arbitrarily stiff material at singular points.
A Minimax-Theorem guaranties the existence of
an optimal point, which is a saddle point of the
compliance functional J . Due to strong duality
one can pass to the dual problem (5).

3. NUMERICAL TREATMENT

To solve this problem numerically the midsurface
ω is partitioned into M elements ωm. C(x) and
D(x) are approximated by elementwise constant
matrices (C1, . . . , CM ) and (D1, . . . , DM ). The
displacements take the following form

U =
n∑

i=1

λi(r, s)
(

u(i) + z
t

2
θ(i)

)

where the λi(r, s) are bilinear Lagrangean shape
functions and n is the number of nodes (6). For
each element one defines

Aγ
m =

∑

i,j∈K

∫

ωm

Bγ
j UU>(Bγ

i )>dx

where K is the index set of nodes associated
with the element m and Bγ

i is the discretized
membrane strain matrix. Matrices Aχ

m and Aζ
m

are defined analogously. According to this the
discretized dual Single Load Problem takes the
form of a convex semidefinite programm (7)

max
(u,θ)∈U
α∈R+

βC
u ,βD

u ∈RM
+

∫

Γ1

(g · u + m · θ)dl − V α

−
∫

ω
(c+βC

u + d+βD
u )dS

subject to
t

2
Aγ

m +
t3

24
Aχ

m − (α + βC
u )1 ¹ 0

t

2
Aζ

m − (α + βD
u )1 ¹ 0

As a numeric test example the design of a
clamp is optimized. In Fig. 1 the problem set-
ting is shown, the resulting ”density function”
tr(C) + tr(D) is displayed in Fig. 2.

−1

−0.5

0

0.5

1

1.5 −1.5
−1

−0.5
0

0.5
1

1.5

−1.5

−1

−0.5

0

0.5

1

Fig. 1. Shell (hyperbolic paraboloid) with thickness
t = 0.03, Dirichlet boundary conditions at x = −1
and a downward force at x = 1, y = 0
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Fig. 2. ”density function” of the deformed shell
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INVERSE PROBLEMS AND SELF-ADJOINT EXTENSIONS OF
LAPLACIAN

A. LAURAIN AND K. SZULC

Let Ω and ω, with 0 ∈ ω, 0 ∈ Ω two open subsets of R
2 with smooth boundaries.

Let ε > 0 be a small parameter and h a vector of R
2. We define the perturbed

domains Ωh
ε and ωh

ε in the following way: ωε = {x ∈ R
2, x = εξ, ξ ∈ ω} and

Ωε = Ω\ωε, ωh
ε = {x = y +h, y ∈ ωε} and Ωh

ε = Ω\ωh
ε . We consider the following

perturbed problem in R
2, with f in L2(Ω):

−∆vh(x, ε) = f(x) in Ωh
ε ,(1)

vh(x, ε) = 0 on ∂Ω,(2)

vh(x, ε) = 0 on ∂ωh
ε .(3)

For h = 0, the self-adjoint extension of the Laplace operator is defined as follows:
let A0 be the Laplacian operator −∆x in L2(Ω) with the domain of definition

(4) D(A0) =
{

v ∈ C∞

0
(Ω \ {0}), v = 0 sur ∂Ω

}

The closure A0 and the adjoint A∗

0
of the operator A0 are given by the differential

expression −∆x, with the respective domain of definition:

(5) D(A0) =
{

v ∈ H2(Ω), v(0) = 0, v = 0 on ∂Ω
}

and

(6) D(A∗

0
) =

{

v : v(x) = χδ(x)(−
a

2π
log r + b) + v̄(x), v̄ ∈ D(A0), a, b ∈ R

}

There exists a family of self-adjoint operators A, such that A0 ⊂ A ⊂ A∗

0
and

the domain of definition D(A) contains all the required singular solutions for the
Dirichlet problem in Ω.

Theorem 1. Let A be the restriction of the operator A∗

0
to the vector space

D(A) = {v ∈ D(A∗

0
) : b = Sa}

where S = S(ε) = (2π)−1(log ε + L), L is a constant which depends on the shape

of ω. Then A is a self-adjoint operator and the following equation admits a unique

solution v ∈ D(A).

Av = f ∈ L2(Ω)

Actually, the function v is given by:

(7) v(x) = v0(x) + λ(h)G(x, h)v0(h), ∀x ∈ Ω,

with

(8) λ(h) =

(

log ε + L

2π
+ G(h, h)

)−1

.

1
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J (left), v (center) and z (right) after 119 iterations.

where v0 ∈ H2 is the solution of the problem in Ω described as

(9)
−∆v0(x) = f(x) in Ω

v0(x) = 0 on ∂Ω

where G is the Green function and G is the regular part of the Green function.
From now on, the domain ω is assumed to be a ball of radius 1. We want to

minimize the cost functional

(10) min
h∈Ω

J (h) :=
1

2

∫

Ω2

(v(x) − z(x))2dx

where z is a given observation in L2(Ω2). To this end we compute the gradient of
J with respect to h.

(11) ∇J (h) =

∫

Ω2

(v(x) − z(x))∇hv(x)dx

The gradient ∇hv(x) takes the form:

∇hv(x) = λ(h)

[

v0(h)

(

x − h

2πr2

h

−∇yG(x, h)

)

+ G(x, h)∇v0(h)

]

− λ(h)2G(x, h)v0(h)[∇xG(h, h) + ∇yG(h, h)].

where rh = ‖x − h‖, and ∇xG and ∇yG are the gradients with respect to the first
and second variables of G, respectively.

For the numerical example we use the usual Polak-Ribière algorithm of conjugate
gradient and we take Ω = [0, 1]×[0, 1], Ω1 = B((0.5, 0.5), 0.25) and f = 100x2y+10.
The observation z is artificial, which means that we know ad hoc the location of the
hole h∗ but we start the procedure from another value of h. We use finite differences
with a Shortley-Weller approximation to discretize the Laplacian on the boundary
of the ball Ω1. The exact position h∗ of the hole to be found is h∗ = (0.5, 0.5). The
initial and final values of J and h are reported below. After 119 iterations with
255 × 255 elements on the grid, we converge to the following value of h and J

initialization after 119 iterations
h (0.65, 0.65) (0.50011, 0.50003)
J 6.36024.10−3 8.88902.10−5
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1. SHAPE OPTIMIZATION

In the present paper the method of indentifica-
tion of the coordinates and the radius of a small
hole [1] is extended to the case of a finite num-
ber of imperfections. We consider a vector of
locations yj ∈ Ω and radiuses ρj , j = 1, . . . ,M

of small holes Bj(yj) = {x : |x − yj | < ρj}
which are included in Ω0. The procedure of such
an identification is based on the values of shape
functionals Ji(Ω), i = 1, . . . , N defined by

Ji(Ωj) =
∫

Ωj

Fi(x, u(x),∇u(x))dx, (1)

i = 1, . . . , N,

which depend on the solutions u(x), x ∈ Ω, of
the boundary value problem

4u = f in Ωj ,

u = g on Γ1,
∂u
∂n = h on Γ2,
∂u
∂n = 0 on Γ3,

(2)

Γ3 = ∪j
k=1∂Bk(yk) = ∂Ωj r (Γ1 ∪ Γ2).

in the domains Ωj := Ωj−1 r Bj(Ωj), j −
1, . . . , N . Here we denote by Ω0 i.e., for j = 0
the domain without any hole, Ω1 = Ω0 rB1(y1)
the domain with one hole and for each j ≥ 2, Ωj

is the domain with j holes.
By the proposed identification procedure we

can compute the coordinates yj ∈ Ω0 of the
holes Bj(yj) as well as the radiuses ρj such
that given values of observation from physical
model denoted by J1j , . . . , JNj , j = 1, . . . ,M

coincide approximately with the values Ji(Ωj),
i = 1, . . . , N , j = 1, . . . ,M obtained from the
mathematical model.

For the case of one small hole the method is
described in [1]. In the present paper the problem
consists in identification of several holes. There-
fore, we are interested from numerical point of
view, in the inverse of the mapping

Gj : R3j → RN ,

Gj(y1, ρ1, . . . , yj , ρj) = {J1(Ωj), . . . ,JN (Ωj)}.
(3)

In the method we construct its approximation in
the form

Gij(y1, ρ1, . . . , yj , ρj) ∼= Ji(Ωj)+
j∑

k=1

ρ2
k

2
TΩ0Ji(yk)

(4)
and determine the generalized inverse of this ap-
proximation, instead of the inverses of mappings
Gj . From the mathematical point of view, the
inverse mapping G−1

j is difficult to evaluate. In
this case we can use, as it is proposed in [1],
artificial neural networks to determine the gen-
eralized inverse of mapping (4). The numeri-
cal method can be described briefly as follows.
We are going to generate a learning set con-
sists of patterns formed by the values of shape
functionals and targets formed by the coordinates
and the radiuses of holes. We restrict ourselves
to particular case of domain with three holes.
Let us denote the learning set by Jk

i , (yk
j , ρk

j ),
i = 1, . . . , 12, j = 1, . . . , 3, k = 1, . . . ,K where
K is a size of learning set.

2. NEURAL NETWORKS

A learning set created in this way cantains the
degraded values calculated based on the random
sets of triples holes. A neural network is an ap-
proximator of the conditional expectation θ0. It

66



is the conditional expectation of the exact vec-
tor of set of triples holes Y k = (Y k

1 , . . . , Y k
9 ),

k = 1, . . . ,K - completely unknown, where:
(Y k

1 , Y k
2 )− the coordinates of first hole’s center,

Y k
3 − the radius of first hole,

(Y k
4 , Y k

5 )− the coordinates of second hole’s cen-
ter, Y k

6 − the radius of second hole,
(Y k

7 , Y k
8 )− the coordinates of third hole’s center,

Y k
9 − the radius of third hole;

given the value of random generated vector of
set of triples holes Xk = (Xk

1 , . . . , Xk
9 ), k =

1, . . . ,K, where:
(Xk

1 , Xk
2 ) = yk

1− the coordinates of first hole’s
center, Xk

3 = ρk
1− the radius of first hole,

(Xk
4 , Xk

5 ) = yk
2− the coordinates of second

hole’s center, Xk
6 = ρk

2− the radius of second
hole,
(Xk

7 , Xk
8 ) = yk

1− the coordinates of third hole’s
center, Xk

9 = ρk
3− the radisus of third hole.

For the vector Xk we calculate, using the func-
tion G, the shape functionals Jk

i , i = 1, . . . , 12,
k = 1, . . . ,K. The shape functionals are the el-
ements of the learning set and they are the input
vectors for neural network as the vectors corre-
sponding to the set of triples holes.

The conditional expectation we denote the fol-
lowing formula

θ0(Xk) = E(Y k|Xk),

for k ∈ {1, . . . ,K},

where a size of learning set K →∞.
We learn the neural network composed of 13

inputs (the vector of shape functionals + bias) and
9 outputs (the vektor conditional expectations of
triples holes). Moreover the neural network con-
tains 4 hidden layers composed of q1, q2, q3, q4

neurons.
We define a function space Θ containing θ0.

Created neural network is capable of arbitrarily
accurate approximation to elements of space Θ.
Let θ be neural network described earlier. θ ∈ Θ.
We construct a sequence of „sieves” {ΘK} for
K = 1, 2, . . . . ΘK is a function space containing
neural networks learnt based on K− elements
learning set. The number of neurons in hidden
layers of neural network depends on a size of
learning set and increases with increase of K,
i.e. q1 −→

K→∞
∞, . . . , q4 −→

K→∞
∞.

3. CONCLUSIONS

We define „connectionist sieve estimator” as a
solution to the least squares problem (appropriate
for learning E(Y k|Xk))

min
θ∈ΘK

K−1
K∑

k=1

[Y k − θ(Xk)]2,

for K = 1, 2, . . . .

We show, that by some assumptions, there exists
sieve estimator θ̃K such that

1
K

K∑
k=1

[Y k−θ̃K(Xk)]2 = min
θ∈ΘK

1
K

K∑
k=1

[Y k−θ(Xk)]2,

for K = 1, 2, . . . . Further d(θ̃K , θ0)
P−→ 0,

where d− a measure of distance between func-
tions and convergence is in measure.
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1. INTRODUCTION

Topological derivatives are used in order to model
the influence of geometrical imperfections or sin-
gularities of small size on the integral function-
als evaluated for solutions of PDE’s, ((Argatov
et.al, 2003), (Fulmaści et.al, 2006), (Jackowska
et.al, 2002), (Lewiński et.al, 2003), (Nazarov
et.al, 2003), (Nazarov et.al, 2004), (Nazarov et.al,
2006), (Sokołowski et.al, 1999), (Sokołowski
et.al, 2001), (Sokołowski et.al, 2003)). In the pa-
per we present a mathematical model in the case
of the Signorini problem on the crack and the nu-
merical method for approximating such solutions
and evaluating topological derivatives.

Actually, in the paper, a numerical method for
the evaluation of topological derivatives is pro-
posed for specific integral functionals which can
be minimized for the resolution of some inverse
problems. The method can be applied to a class
of nonlinear contact problems on cracks, i.e. for
the problems with nonpenetration conditions pre-
scribed on the crack faces. Such boundary value
problems in theory of elasticity can be formulated
in smooth geometrical domains with the inequal-
ity constraints included in a convex set (Khludnev
et.al, 2004). From the numerical point of view, it
means, that all computations can be performed in
the domain without any cut (crack). However, we
should take into account the presence of the crack
in the function space in the formulation of the uni-
lateral problem under considerations, in another
words the unilateral conditions are included in the
convex set of test functions.
Numerical analysis of the variational inequality
considered here is performed in (Belhachmi et.al,
2003). Our paper is in fact a continuation of the

research in the direction of applications, in nu-
merical methods for shape optimisation problems
in the domains with cracks. In such a case, we
should be able to evaluate the shape and topologi-
cal derivatives of shape functionals and to solve
the shape optimization problem by an applica-
tion of e.g., the level set method Fulmaści et.al
(2006). In the present paper, we focus on the
evaluation of topological derivatives for the inte-
gral shape functionals in view of applications to
inverse problems, see Jackowska et.al (2002) for
this type of applications in smooth domains.
The outline of the paper is the following. In sec-
tion 2, the mathematical formulation of the Sig-
norini problem is presented. The model includes
the Poisson equation in the domain Ω, and the in-
equality type boundary conditions on the crack
faces Γ±c . The existence of a unique weak solu-
tion u for the boundary value problem is assured
and the so-called smooth formulation of the prob-
lem is introduced for the purposes of numerical
methods.
In section 3, related shape optimization problems
for the integral shape functionals are considered.
Some sufficient conditions for the existence of an
optimal shape are given. We restrict ourselves to
the computation of topological derivatives. Nu-
merical solution of the related shape optimization
problems is the subject of a forthcoming paper.
In section 4, the shape differentiability of the en-
ergy functional is shown. We provide the form
of shape derivatives for the variations of external
boundary as well as the crack faces. The notion of
topological derivative is introduced and its form is
derived.
Finally, in section 5 the numerical method for

68



Fig. 1. The domain Ω

evaluation of topological derivatives is described
and some numerical results are given.

2. VARIATIONAL INEQUALITY
IN NONSMOOTH DOMAINS

We consider variational inequalities in the geo-
metrical domain with the cut Γc. The set Γc is
called a crack, if some specific boundary condi-
tions for solutions of boundary value problems are
prescribed on both faces Γ±c of the cut Γc.

Let D be a bounded domain in R2 with smooth
boundary Γ, and Γc ⊂ D be a smooth curve with-
out self-intersections.

We assume that Γc can be extended to a closed
smooth curve Σ ⊂ D, with Σ of class C1,1, and
D = Ω1 ∪Σ∪Ω2 is divided into two sub-domains
Ω1,Ω2, (see Figure 1). In this case, Σ = ∂Ω1 is the
boundary of Ω1 and Σ ∪ Γ = ∂Ω2 is the boundary
of Ω2. Let Ω be the domain D \ Γc. Then Γc is
called a crack in the elastic body of the reference
configuration Ω. We restrict ourselves to the case
of an elastic membrane, the generalization to an
elastic body in two or three spatial dimensions is
straightforward. The static equilibrium problem
for the elastic membrane in the domainΩwith the
interior crack Γc can be formulated as follows.
Find u such that

−∆u = f in Ω

u = 0 on Γ

[u] ≥ 0,
[
∂u
∂ν

]
= 0, [u] ∂u

∂ν = 0 on Γc
∂u
∂ν ≤ 0 on Γ±c

(1)

where f is a given function in L2(Ω). The jump of
the solution u on Γc is denoted by [u] = u+ − u−,

where u± = u|Γ±c are the traces of u on Γ±c .

Boundary value problem (1) can be considered
as a free boundary problem since the coincidence
set Ξ = {x ∈ Γc| [u] = 0} is an unknown part of the
solution. For the modelling of such problems in
the framework of linear elasticity, similar bound-
ary conditions arise in the crack theory for elas-
tic bodies ((Khludnev et.al, 2004) (Lewinski et.al,
2000)). In such a case, the inequality type bound-
ary conditions are imposed on Γc to describe the
mutual non-penetration between the crack faces.
It is the so-called frictionless contact problem on
the crack ((Khludnev et.al, 2004), (Sokołowski
et.al, 1992)). If the small ball Bρ(ϑ) is a hole
in Ω, the performed domain Ωρ = Ω \ Bρ(ϑ) is
obtained, and the Neumann boundary conditions
are prescribed in addition on ∂Bρ(ϑ). The solu-
tion uρ is given by the following boundary value
problem,

−∆uρ = f in Ωρ

uρ = 0 on Γ[
uρ

]
≥ 0,

[
∂uρ
∂ν

]
= 0,

[
uρ

]
∂uρ
∂ν = 0 on Γc
∂uρ
∂ν ≤ 0 on Γ±c
∂uρ
∂ν = 0 on ∂Bρ(ϑ)

(2)
Problems (1) and (2) admit variational formu-

lations in Ω and Ωρ, respectively.
Let us consider the boundary value problem in

Ω. The variational problem in Ωρ can be formu-
lated in the same way. It is well-known that (1)
admits a unique weak solution which minimizes,
with respect to v ∈ C(Γc), the energy functional

E (v) =
1
2

∫
Ω

|∇v|2 dx −
∫
Ω

f v dx ≥ E (u) . (3)

The closed convex cone C(Γc) includes all func-
tions in the Sobolev space H1(Ω) which vanish on
Γ and satisfies the unilateral condition [v] ≥ 0 on
Γc,

C(Γc) = {v ∈ H1(Ω)|v = 0 on Γ, [v] ≥ 0 on Γc}.

(4)
We introduce the mixed formulation of the

variational inequality. To this end we denote by
V = V(Ω) the space L2(Ω), to indicate the depen-
dence on the domain Ω, and introduce the space
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X = X(Ω) of vector functions

X =
{
q ∈ L2(Ω)2 | div q ∈ L2(Ω)

}
. (5)

X(Ω) is a Hilbert space equipped with the norm

‖q‖X =
(
‖q‖2(L2(Ω))2 + ‖div q‖2L2(Ω)

) 1
2 . (6)

Let K(Ω) ⊂ X(Ω) denote the convex set

K =
{
q ∈ X |

[
q.ν

]
= 0 onΓc, (q.ν)± ≤ 0 onΓ±c

}
,

(7)
which is defined by using the dual order in the

fractional Sobolev space (H
1
2
00(Γc))′ for the in-

equality condition on Γ±c . We refer the reader to
(Adams et.al, 1975) for the definition and proper-
ties of the Sobolev spaces. Here [·] denotes the
jump across Γc and ν is the unit normal vector
pointing to the exterior of Ω1 (see Figure 1). The
mixed formulation of boundary value problem (1)
can be written in the form of variational problem.
Find (p, u) ∈ K (Ω) × V (Ω) such that

∫
Ω

p (q − p) dx
+

∫
Ω

u (divq − divp)dx ≥ 0,
∀q ∈ K(Ω),

−
∫
Ω

div p v dx =
∫
Ω

f v dx, ∀v ∈ V(Ω)
(8)

Note that (∇u, u) is the solution of problem (1).
The smooth domain formulation of (1) in

D, useful for numerical methods, is introduced
(Khludnev et.al, 2004) as follows.
Find (p, u) ∈ K (D) × V (D) such that

∫
D p (q − p) dx
+

∫
D u (divq − divp)dx ≥ 0,

∀q ∈ K(D),

−
∫

D div p v dx =
∫

D f v dx, ∀v ∈ V(D).
(9)

The smooth domain formulation of (8) means that
the functions p and u which are defined in Ω are
extended to the entire domain D = Ω∪Γc. Hence,
the closed problem formulation (9) is obtained
by replacing Ω with D in (7), with the obvious
modification of the function spaces are defined
now over D, and are denoted by X = X(D) and
V = V(D).
The well-posedness of smooth domain formula-
tion (9) is proved in (Khludnev et.al, 2004) with
the arguments based on the regularization tech-
nique. This means that the solution is defined in
D, the crack is present only in the definition of the
set of test functions K(Ω).

3. SHAPE OPTIMIZATION IN
NONSMOOTH DOMAIN

Our aime is to prepare numerical method of anal-
ysis of variational inequalities, which can be used
for numerical solutions of relate shape optimi-
sation or inverse problems. Shape optimization
problems can be solved numerically e.g. by an
application of the level set method combined with
the shape derivatives and the topological deriva-
tives (Fulmaści et.al, 2006). We introduce the
shape and topological derivatives for the max-
imization of integral shape functionals, to fix
ideas. Similar expressions for shape and topolog-
ical derivatives can be obtained for a broad class
of integral shape functionals ((Sokołowski et.al,
2001), (Sokołowski et.al, 2003)). We present nu-
merical results for some exemples in section 4. As
an example, let us consider the energy functional

J (Ω) := E (u) = inf
v∈C(Γc)

{
1
2

∫
Ω

|∇v|2 −
∫
Ω

f v
}
.

(10)
Shape optimization problem which can be con-
sidered for functional (10) is e.g. the maxi-
mization of J (Ω) := E (uΩ) with the respect
to the geometrical domain Ω. It is supposed
that the volume of Ω is fixed and the crack Γc

is included in the family Uad of admissible do-
mains. A regularisation term for the shape func-
tional can be introduced in order to assure the
existence of an optimal shape (Fulmaści et.al,
2006). To solve the shape optimization prob-
lems one usually needs the so-called shape deriva-
tives (Khludnev et.al, 2004). We briefly recall
the different sorts of shape derivatives which can
be derived for the energy functional. We re-
fer to (Slimane et.al, 2004) for all details of
such a derivation. In numerical methods of
shape optimization, the shape gradients are used
for the change of domain by means of bound-
ary variations, and the topological derivatives
are useful for creating small holes. Proofs of
the formulae given below can be founded e.g.
in (Sokołowski et.al, 2001) (Sokołowski et.al,
2003), (Sokołowski et.al, 1992).

The shape derivatives of the energy function-
als

J(Ω) := E(u). (11)
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which can be obtained with respect to the varia-
tions of the boundary ∂Ω include:
1. boundary variations, (Sokołowski et.al, 1992)

of Γ = ∂D for the vector field V with suppV ∩
Γc = ∅ are given by the expression

dJ(Ω; v) =
1
2

∫
Γ

‖∇u‖2V · ndΓ(x) (12)

2. variations of the proposition of the crack tip
for the constant vector field V in direction of
the tangent vector to the crack and such that
suppV ∩ Γ = ∅

dJ(Ω; v) = − 1
2

∫
Ω

(ϑx1(u2
x1
− u2

x2
) + 2ϑx2ux1ux2)

−
∫
Ω

(ϑ f )x1u
(13)

where ϑ ∈ C∞0 (D) is any function (Khludnev
et.al, 2004) such that ϑ = 1 in the neighbour-
hood of the tip (l; 0), l > 0 (see Figure 1.)

3. topological variations of the energy functional
resulting from the creation of a small hole
Bρ(ϑ). This leads to the topological derivative
denoted by TΩ (ϑ). The derivative is defined
using the asymptotic expansion of the energy
functional with respect to the small parameter
ρ

J(Ωρ) = J(Ω) + ρ2TΩ + o(ρ2), (14)

where Ωρ = Ω \ Bρ(ϑ), ϑ ∈ Ω, Bρ(ϑ) ∩ Γc = ∅

The topological derivative TΩ (ϑ) is given by two
equivalent expressions, see (Sokołowski et.al,
2001), (Sokołowski et.al, 2003) for the results in
the case of contact problems.

• The first expression is the line integral :

TΩ(ϑ) = −
1
πR6

(∫
ΓR

ux1

)2

+

(∫
ΓR

ux2

)2
(15)

where ΓR is a contour outside of Bρ(O), i.e.
Bρ(O) ⊂ BR(O) ⊂ Ωρ and ΓR = ∂BR(O).
• The second expression includes the value of

the gradient ‖∇u (O)‖2 at the center O of the
hole, where u is the solution of unperturbed
problem (1). The equivalent expression is ob-
tained in (Nazarov et.al, 2006) for the expan-
sion of the energy functional and for ρ > 0, ρ
small enough,

E(Ωρ) = E(Ω) +
ρ2π

2
|∇u(Ω;O)|2 + O(ρ3−δ)

(16)

for some 0 < δ < 1. For the derivation of (16),
the asymptotics of solutions to the boundary
value problem defined in Ωρ are used, with
respect to the small parameter ρ > 0, uρ ∈
H1

(
Ωρ

)
.

4. NUMERICAL EVALUATION
OF TOPOLOGICAL DERIVA-
TIVES BY SMOOTH DOMAIN
METHOD

In order to determine the shape and topological
derivatives we need a numerical solution to the
variational inequality under considerations. We
describe the numerical procedure for solutions of
variational inequalities in Ω. Let h > 0 denotes
the parameter of discretization by the finite ele-
ment method. We denote by σ > 0 the regular-
ization parameter. The discrete problem for (8) is
defined in the following way:
Find

(
uh,ph

)
∈ Vh ×Kh such that{

aδ (uh, vh) + b (vh, ph) = ( f , vh) ∀vh ∈ Vh

−b (uh,qh − ph) + g (ph,qh − ph) ≥ 0 ∀qh ∈ Kh
(17)

There is a unique solution (uh,ph) to (17) for h >
0. The energy functional over the convex set V×K
is given by

J(v,q) =
1
2

aδ(v, v) − ( f , v) − b(v,q) +
1
2

g(q,q).
(18)

Solution of problem (17) is equivalent to the min-
imization of functional (18)

J(u,p) = min
(v,q)∈V×K

J(v,q) . (19)

The linear constraints in the definition of K can
be imposed by the duality using the closed convex
cone

M =
{
µ ∈ H

1
2 (Γc); µ ≥ 0

}
, (20)

thus the variational formulation for problem (17)
can be rewritten as follows:
Find (uh,ph, λh) ∈ Vh × Xh × Mh such that

aδ(uh, vh) + b(vh,ph) = ( f , vh) ∀vh ∈ Vh ,

−b(uh,qh) + g(ph,qh)
+

∫
Γc

(λh)(qh.ν) dσ = 0 ∀qh ∈ Xh ,∫
Γc

(µh − λh)(ph.ν) dσ ≤ 0 ∀µh ∈ Mh ,

(21)
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where Mh is a specific multiplier set, (Belhachmi
et.al, 2003), which can be defined by the follow-
ing approximation

M0
h =

{
µh ∈ W0

h (Γc), µh ≥ 0, on Γc
}
, (22)

and the choice of W1
h (Γc) leads to the following

two approximation sets, Belhashmi et al. (2003)

M1
h =

{
µh ∈ W1

h (Γc), µh ≥ 0, on Γc
}
, (23)

or

M1,∗
h =

{
µh ∈ W1

h (Γc),∫
Γc
µhψh dΓ ≥ 0, ∀ψh ∈ M1

h

}
.

(24)

Here W0
h or W1

h means the approximation piece-
wise constant and piecewise linear respectively.

In order to perform the computations, the ma-
trix formulation of problem (21) is used. It is
readily checked that (uh,ph, λh) ∈ Vh × Xh × Mh

is a solution of (21) if and only if (uh,ph, λh)
is a saddle-point of the Lagrangian defined on
Vh × Xh × Mh by

L(vh,qh, µh) = J(vh,qh) +
∫
Γc

µh.(qh.v) dσ

(25)
which means that (uh,ph, λh) satisfies

L(uh,ph, µh) ≤ L(uh,ph, λh) ∀(vh,qh) ∈ Vh × Xh,

≤ L(vh,qh, λh), ∀µh ∈ Mh.
(26)

Let V, U denote the vectors with the entries given
by the nodal values of the functions (vh,qh) and
(uh,ph), respectively. Let M and Λ be the vectors
with the entries given by the nodal values of µh

and λh, respectively, for the three different choices
of the space Mh, namely Mh = M1

h , Mh = M1,∗
h or

Mh = M0
h . Therefore, the saddle-point problem

for Lagrangian (25) can be rewritten in finite di-
mensional setting :
Find U = (uh,ph) and Λ, defined by the following
max-min condition

max
S M≥0

(
min

V

1
2

tVKV − tVF + (tV L)S M
)
, (27)

where K denotes the stiffness matrix, F is the vec-
tor corresponding to the external loading and the
matrix S expresses the sign conditions for multi-
pliers (22)-(24) and L is the coupling matrix de-
fined below.

Given a triangularization Th ofΩ, let N denote
the number of nodes in Ω and NT the number of
elements in Th. Denote by (wi)N

i=1, the Lagrange
finite element basis of Vh and let (Φi) stand for
the basis in the space Xh. Each vector function
Φi is either of the form (wi, 0), 1 ≤ i ≤ N, (bi, 0),
1 ≤ i ≤ NT , or it is given by (0,wi), 1 ≤ i ≤ N,
(0, bi), 1 ≤ i ≤ NT , respectively, where by bi is
denoted a bubble function. Then the matrix K is
defined by

K =


Aδ tB1

tB2

−B1 G1 0
−B2 0 G2

 (28)

and the right hand side takes the form

F =


D F

0
0

 ,
with F = ( fi)i, D = (

∫
Ω

wi w j dx)i j, i, j = 1, . . . ,N
and Aδ = δD. The matrices B1 and B2 are de-
fined by (B1)i j = (

∫
Ω

w j∂1Φ
(1)
i dx)i j and (B2)i j =

(
∫
Ω

w j∂2Φ
(2)
i dx)i j, j = 1, . . . ,N, i = 1, . . . ,N +

NT . Finally

G1 = G2 =

(
D (

∫
Ω

wi b j dx)i j

(
∫
Ω

bi w j dx)i j (
∫
Ω

b2
i dx)δi j

)
,

where δi j is the Kronecker symbol.
Let Nc denote the number of nodes on Γc and

let us denote by (ψi)i, 1 ≤ i ≤ Nc the basis in
the space W1

h (Γc) and by (φi)i the basis of W0
h (Γc),

1 ≤ i ≤ Nc − 1. We have a specific form of S for
each particular choice of Mh, namely
• if Mh is M0

h or M1
h then S is given by the iden-

tity matrix.
• if Mh = M1,∗

h , then S is given by S i j =∫
Γc
ψi ψ j dΓ, 1 ≤ i, j ≤ Nc.

Finally, the coupling matrix L = (0, L1, L2)’ is de-
fined in the following way
If Mh = M1

h or Mh = M1,∗
h , then

(L1)i j =


∫
Γc
ψ j ((wi, 0).ν) dΓ,

1 ≤ i ≤ N,
1 ≤ j ≤ Nc,

0,
1 ≤ i ≤ NT ,

1 ≤ j ≤ Nc,

and

(L2)i j =


∫
Γc
ψ j ((0,wi).ν) dΓ,

1 ≤ i ≤ N,
1 ≤ j ≤ Nc,

0,
1 ≤ i ≤ NT ,

1 ≤ j ≤ Nc,
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Fig. 2. Domain Ω with a crack Γc and a defect Bρ

If Mh = M0
h , then

(L1)i j =


∫
Γc
φ j ((wi, 0).ν) dΓ,

1 ≤ i ≤ N,
1 ≤ j ≤ Nc − 1,

0,
1 ≤ i ≤ NT ,

1 ≤ j ≤ Nc,

and

(L2)i j =


∫
Γc
φ j ((0,wi).ν) dΓ,

1 ≤ i ≤ N,
1 ≤ j ≤ Nc − 1,

0,
1 ≤ i ≤ NT ,

1 ≤ j ≤ Nc

The solution (U,Λ) of (27) satisfies the saddle-
point conditions and we have

U = K−1(F − L SΛ). (29)

Therefore, for Φ = SΛ, the saddle-point problem
(27) can be rewritten as a quadratic programming
problem

min
Φ≥0

(1
2

tΦtLK−1LΦ − tΦtLK−1F +
1
2

tFK−1F
)
.

(30)
If Φ is the solution of (30), then Λ = S −1Φ. The
solution U is obtained by solving (29). For all the
proofs on well posedness of numerical scheme we
refer the reader to (Belhachmi et.al, 2003).

5. NUMERICAL EXAMPLE

We present numerical results for topological
derivatives of the energy functional for Signorini
problem on the crack. Let us consider a rect-
angle Ω = (2, 4) × (0, 0.5) with the crack Γc =

(2.9, 3.9) × 0.25 and the small hole with center in
x0 = (2.2, 0.4) and radius ρ = 0.03.

In the domain Ω we solve the variational in-
equality

−∆u = 1 in Ω

u = 0 on Γ

[u] ≥ 0,
[
∂u
∂ν

]
= 0, [u] ∂u

∂ν = 0 on Γc
∂u
∂ν ≤ 0 on Γ±c

(31)

Fig. 3. Finite element approximation

Fig. 4. Topological derivative of the energy functional
in the domain with the crack Γc

Fig. 5. Topological derivative of the energy functional
in the domain with the crack.

using the method presented in (Belhachmi et.al,
2003). The topological derivative of the energy
functional is given by the formula

TΩ(x0) =
[
−|∇u(x0)|2 + u(x0)

]
πρ2 (32)

in function of the point x0 ∈ Ω Results of compu-
tations are presented by the following figures

Let us consider another example. In Fig. 6
the actual geometrical domain with a crack and a
hole is presented. In Fig. 7 the topological deriva-
tive of the energy functional is visualized. The re-
sults of computations confirm that the topological
derivative can be evaluated using the finite ele-
ment method proposed in the paper.
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Fig. 6. Topological Derivative

6. CONCLUSIONS

We present a numerical method for evaluating
topological derivatives. Some numerical results
obtained by the method are presented. The next
step will be the use of level set method in shape
optimization for numerical solution of the asso-
ciated shape optimization problems. The topo-
logical derivatives can be also used for numerical
solutions of inverse problems of identification of
small imperfection.

REFERENCES

Adams, R.A., Fournier, J.J.F., (1975): Sobolev
Spaces. Pure and Applied Mathematics, Volume 140,
Academic Press.
Argatov, I.I., Sokolowski, J., (2003): On asymp-
totic behaviour of the energy functional for the Sig-
norini problem under small singular perturbation of
the domain. Journal of Computational Mathematics
and Mathematical Physics, Vol. 43, 742-756.
Belhachmi, Z., Ben Belgacem, F., (2003): Quadratic
finite element for Signorini problem. Math. Comp.
72, 83-104.
Belhachmi, Z., Sac-Epée, J.M., Sokołowski, J.,
(2005): Mixed finite element methods for smooth do-
main formulation of crack problems. SIAM, Vol 43,
No. 3, pp. 1295-1320.
Brezzi, F., Fortin, M., (1991): Mixed and hybrid fi-
nite element methods. Springer Verlag, New York,
Springer Series in Computational Mathematics, 15.
Fulmanski, P., Lauraine, A., Scheid, J.-F.,
Sokołowski, J., (2006): A level set method in
shape and topology optimization for variational
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Mathématiques pures et appliquées, 82-2(2003),
125-196.
Nazarov, S.-A., Sokołowski, J., (2004, The topolog-
ical derivative of the Dirichlet integral due to forma-
tion of a thin ligament, Siberian Math. J. March -
April 2004, Volume 45, Issue 2, 341-355.
Nazarov, S.-A., Sokołowski, J., (2006): Self-adjoint
extensions for the Neumann Laplacian and applica-
tions. Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 3,
879–906.
Slimane, L., Bendali, A., Laborde, P., (2004): Mixed
formulations for a class of variational inequalities,
M2AN, 38, 1, 177-201.
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1. INTRODUCTION 

 
The free material design (FDM) approach was 
proposed by Bendsøe et al.(1994), see also the 
recent paper by Kočvara and Stingl(2007). In 
this approach the Hooke tensor C is viewed as 
the design variable to minimize the compliance 
of the structure optimized. The isoperimetric 
condition is usually put on the trace of this 
tensor or on its Frobenius norm. Within such 
formulation the resulting optimal material 
occurs to be isotropic with zero Poisson ratio. 
The aim of the present paper is to reformulate 
this problem by using the representation 
theorem of Rychlewski (1984) and additional 
theorems by Blinowski et al.(1996). According 
to this representation theorem Hooke’s tensor in 
two dimensions is decomposed as follows: 
 

332211 PPPC λλλ ++= . 
 
The moduli iλ  are called Kelvin moduli 
according to Rychlewski’s suggestion. The 
tensors  are projectors given by tensorial 
products , i=1,2,3. The components 
of tensors (called proper states)  in the 
Cartesian basis  can be expressed as 
follows 

iP

iii ωωP ⊗=

iω

βα ee ⊗

( )iii f θψαβαβ ,=ω , 

where the functions ( ) ( yxfyx ,, αβ→ )  are 
defined below 

( ) yxyxyxf 2211 sinsincoscos, += ,   
( ) yyxxyxf cossin)sin(cos,12 −= , 
( )yxf ,22 yxyx 22 cossinsincos += , 

where ( ) ( )yxfyxf ,, 2112 = ; Greek indices 
assume values 1,2. The quantities ii θψ ,  
determine certain  angles characterizing 
geometry of the underlying microstructure. 
These angles are linked by three formulae which 
will not be reported here. The Kelvin moduli  
and the above angles will be treated as design 
variables. We shall express the free material 
problem in terms of these variables and pose the 
minimum compliance problem in a new manner 
imposing the isoperimetric condition on the 
Kelvin moduli. A new derivation with new 
assumptions will be given for the resulting zero 
Poisson ratio effective material.                       
                      
 

2. REFORMULATION OF THE FREE 
MATERIAL DESIGN 

 
Consider 2D elasticity within a domain Ω , 
parameterised by Cartesian system . Let ( 21, xx )

( )uαβε  be a symmetric part of , where u∇
( )21,uu=u  is the displacement vector, an 

element of the space U of kinematically 
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admissible displacements. Let f(v) represent the 
work of the loading on the trial displacement 
fields v. The elastic potential 
 

( ) ( ) )()(
2
1),(

,,,
uuuuC fdxxCJ −= ∫ ∑

Ω
λµαβ

αβλµ

µλβα
εε

 
is treated as dependent on the tensor C and field 
u. We shall assume that the cost of the plate 
depends on the Kelvin moduli. Let  
 

( )
p

λC =Ψ , 

where  

( )321 ,, λλλ=λ  and p

i

p
ip

/1
3

1
)(∑

=

= λλ . 

The minimum compliance problem is put in the 
form discussed in Bendsøe et al.(1994) as 
 

( )

),(minmax
         

such that  admissible
uC

u
C
C

J
U

Vdx
∈

≤Ψ∫
Ω

 , 

which leads to 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

−∫
Ω

∈∈
uu

u
fdxW

UG
minmax

ρ
 

 
where G is the set of admissible densities being 
non-negative, bounded, whose integral over the 
given domain is smaller than V. The potential W 
is given by 
 

( )

( ) ( )uuu
C

C λµαβ
αβλµ

µλβαρ

εεCW ∑
≤Ψ

=
,,,         

such that   admissible
max )(2  

where we can write now 

( ) ( ) ( )uuu i
i

iaC ∑∑
=

=
3

1,,,
λεε λµαβ

αβλµ

µλβα

 

with 
( ) ( ) ( )( )2

,
,∑=

βα
αβ

αβ εθψ uu iii fa . 

Define . Let us note that the 
choice 

( 321 ,, aaa=a

     

)

( ) ( ) pq
i

pq

qi a // ua −
= ρλ ,   , 111 =+ −− pq

is optimal. The local problem reduces to 
( )

q
ii

W uau
ψθ

ρ
, admissible

max )(2 =  

If q>1, p>0, maximum is realized for the 
angles ii θψ ,  chosen such that 

( ) ( )
211 /, εuαβ

αβ εθψ =f

( ) ( ) ( ) ( ) 0,,0, 33
,

22
,

== ∑∑ uu αβ
αβ

βα
αβ

αβ

βα
εθψεθψ ff

where  ( )
2/1

,

2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

βα
αβεε . Then  

2
21 )( ε=a , 0 , which gives ,0 32 == aa

2
2
)( )(2 εu ρ=W  

 

This means that the optimal Hooke tensor has 
the components , which refers to isotropy 
and zero Poisson ratio; here I is the unit tensor. 
This proves that the problem of minimization of 
the compliance with the isoperimetric condition 
imposed on the distribution of the norm

αβλµρI

p
λ  

does not depend on p if p>0 and coincides with 
the results of the paper by Bendsøe et al.(1994) 
for p=1, p=2. 
 
 

3. THE SAMP METHOD 
 

The second aim of the paper is to generalize the 
SIMP method for 2D anisotropic elasticity 
problems (now called SAMP) with the artificial 
density as a design variable. It will be proved 
that the case of two Kelvin moduli being equal 
implies orthotropy and leads to isotropy upon 
optimization. The case of three different Kelvin 
moduli lead to essentially new optimal layouts. 
The numerical results to be presented were 
found by  Svanberg’s Method of Moving 
Asymptotes, the equilibrium problems being 
solved with using a version of Meshless Method 
called the Radial Point Interpolation Method. 
 
 
Acknowledgements 
The work was supported through the grant  of 
the Polish Committee of Scientific Research, No 
4T07A 038 30:  Theory and numerical 
implementation of the relaxed formulations of 
optimum design problems with coupled fields. 
Designing of the layout of materials in 
composite  structures.  

 
 

REFERENCES 
 
Bendsøe,M.P., J.M.Guedes, R.B.Haber, 

P.Pedersen, J.E.Taylor (1994): An 
Analytical Model to Predict Optimal 
Material Properties in the Context of 
Optimal Structural Design. J.Appl.Mech. 
Trans. ASME,vol. 61, 930-937. 

Blinowski,A, J.Ostrowska - Maciejewska, 
J.Rychlewski. (1996): Two-Dimensional 
Hooke’s Tensors-Isotropic Decomposition, 
Effective Symmetry Criteria. Arch. Mech., 
vol.48, 325-345. 

Kočvara, M., M.Stingl (2007): Free Material 
Optimization for Stress Constraints. 
Struct.Multidisc.Optim.,vol.33, 323-335. 

Rychlewski, J. (1984): On Hooke’s Law. 
Prikl.Mat.Mekh., vol.48, 420-435 (in 
Russian) 

76



     

 
 
 
 
 
 
 
 
 
 
 
 

OPTIMAL SAMPLE TIME ESTIMATION FOR THE FINITE–DIMENSIONAL DISCRETE 

DYNAMIC COMPENSATOR IMPLEMENTED AT THE “SOFT PLC” PLATFORM 

    
 

Wojciech Mitkowski 

Krzysztof Oprzędkiewicz 

 
AGH UST, Dept of Automatics, email: wmi@ia.agh.edu.pl 

AGH UST, Dept of Automatics, email: kop@uci.agh.edu.pl 
 

Keywords: parabolic systems, discrete dynamic feedback, sample time assign. 
 
 

 
1. THE EXPERIMENTAL HEAT OBJECT 

AND ITS MODEL 
 
In the paper we deal with a one dimensional 
experimental heat object, shown in Figure 1. 
The main part of the object is a thin copper rod 
with an electric heater at one end and a 
temperature sensor at the other end. The input 
u(t) and the output y(t) of this object are electric 
signals. The length of the heater equals xu  and 
the length of the temperature sensor is equal to 
∆x = x2 – x1.  
 

 
Figure 1. The one dimensional heat object. 
 
The temperature along the rod can be described 
by a discrete state space equation (obtained after 
the discretization of time t):  

)()(

,2,1,0,0)0(

)()()1(

kCky

k

kuBkAk

Θ=

==Θ

+Θ=+Θ

++

+++

K                            (1) 

Θ(k) denotes the temperature at the moment k, 

{ }K,,, 210
++++ = λλλdiagA  - state operator, 

[ ]TbbbB K
++++ = 000  - control operator, 

[ ]...210
++++ = cccC  - output operator. 

The above operators are expressed as follows: 
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where Ts denotes the sample time for the system.  
 
2. THE FINITE-DIMENSIONAL DISCRETE 

DYNAMIC COMPENSATOR  
 

For the system (1) described in the previous 
section the following finite–dimensional discrete 
feedback can be proposed (see Fig. 2): 
 
 
N
+
r 

 M
+
r 

 y
+
(i) 

)(11 iwK
++

 

A/D D/A 

u(t)   y(t) 
 u
+
(i) 

PLC 

Compensator 

Heat object 

 
Figure 2. The closed-loop control system with 

dynamic discrete compensator. 
 
The discrete compensator is described as 
follows: 
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where  
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The dimension of matrix +
1A  is +∞<m  and the 

dimension of matrix +
2A  is +∞<p  (see 

Mitkowski 1991, p. 232). 

The matrices G1
+  and K1

+  are selected such that  

1|)(| 111 <− +++ CGAλλλλ  and 1|)(| 111 <+ +++ KBAλλλλ .  

Denote the spectrum of the closed–loop system 
from Figure 2 by Λc

+ : 
 

{ },...,, 210
++++ =Λ λλλλλλλλλλλλc                                            (4) 

 
The spectrum (4) is dependent on sample time 

sT . Let rT  denotes a control time such that 

εεεε<Θ ||)(|| rT  (see (1)), 0>εεεε  is suitably small. If 

the eigenvalues of the matrices +++ − 111 CGA  and 
+++ + 111 KBA  equal zero, then 0≈εεεε  and thus 

sr TpmT )( +≈ .  

The closed-loop control system with dynamic 
discrete compensator (see Figure 2) was 
implemented on the “soft PLC” platform built 
with the use of SIEMENS SIMATIC 
components.  
 

3. AN OPTIMAL SAMPLE TIME 
SELECTION PROBLEM AND 

PROPOSITION OF ITS SOLUTION. 
 

A proper selection of the value of the sample 
time Ts  is a crucial problem in the construction 
of discrete control system.  
We are not able to give an exact analytical 
relation between the sample time Ts and the 
control time Tr, but some points of this relation 
are known from experiments.  
The proposed algorithm of selection of an 
estimate for the optimal sample time consists of 
the following steps: 
1. Experimentally determine some points of the 

function: Tr=f(Ts).  
2. Make a polynomial interpolation W(Ts) of 

function f.  
3. Find a minimum of function W. The sample 

time, which minimizes W is the estimate we 
are looking for. 

Results obtained by the above algorithm are 
presented in Figure 3.  
For the above example the following second 
order polynomial was used:  

01
2

2)( aTaTaTW sss ++=                             (5) 

where 
a2 = 0.00002600000000 

a1 =  −0.03720000000000 
a0 =  61.23999999999997 
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Figure 3. Control time Tr as a function of sample 

time Ts. 
 
An estimation of the optimal sample time is 
presented in the Table 1. For a comparison, in 
the same table the experimentally tested control 
time for the optimal sample time is given: 
 
Table 1. Estimated and tested control times: 

Estimation of optimal 
sample time Ts

min  [ms] 
715 

The estimated minimal 
control time Tr

min [s] 
47.94 

The experimentally 
selected control time 
for Ts

min [s] 

48.17 

 
4. CONCLUSIONS 

 
The main conclusion is that the proposed 
approach can be useful for selecting the optimal 
sample time Ts in most of real situations, when 
we are not able to use analytical methods to 
that purpose. 
This paper was sponsored by project 
3T11A00730. 
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54506 Vandoeuvre lès Nancy Cedex, France

sokolows@iecn.u-nancy.fr
and

Systems Research Institute of the Polish
Academy of Sciences, ul. Newelska 6, 01-447 Warszawa, Poland

zochowsk@ibspan.waw.pl

Keywords: shape optimization, topological derivative, shape derivative, shape functional, asymptotic analysis.

Asymptotic analysis with respect to singular

perturbations of geometrical domains is used in

shape optimization in order to improve the per-

formance of numerical methods, in particular of

the level set method. The first term of asymptotic

expansion of a given shape functional with re-

spect to small parameter which measures the size

of the perturbation is called topological deriva-

tive of the shape functional under study. Such

notion is introduced in (2) for elliptic bound-

ary value problems, and it is based on the works

of Russian school on the asymptotic analysis of

PDE’s in the sense of Il’in as well as of Mazja,

Nazarov and Plamenievskii, the list of references

can be found e.g., in (4).

We present a general framework for construc-

tion of asymptotic expansions of shape function-

als in two dimensional case. We restrict our-

selves to the case of plane elasticity and singular

geometrical perturbations of the domain of in-

tegration. The method of analysis of elasticity

boundary value problems is based on complex

variable approach developed by Muskhelishvili.

In this way we are able to construct explicit so-

lutions of elasticity boundary value problems in

a ring and perform the asymptotic analysis of the

solutions with respect to the radius of the interior

hole, when the radius tends to zero.

The asymptotic analysis results in expansions

of arbitrary order with respect to the small pa-

rameter which measures the size of the small

opening inserted into the domain of integration,

i.e. of the small hole in an elastic body. The

results are given not only in an explicit form, but

also in the form useful for numerical methods.

The presented formulae can be used in shape

and topology optimization in structural mechan-

ics. This means that we are able to derive the

form of higher order topological derivatives in

linearized elasticity, which seems to be new in

the literature on the subject. Roughly speaking,

the first order topological derivative indicates the

place where a small hole can be injected in order

to improve the value of the shape functional, and

the second order topological derivative indicates

the size of the hole, we refer to the presentation

of A. Novotny in our minisymposium for the re-

sults in this direction in the case of the Laplacian.

Some numerical results are also included in

our presentation.
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1. INTRODUCTION 

 
We are interested in finding representations of 
effective constitutive tensors of composites 
assembled from two basic materials whose 
physical characteristics are described by 
Hooke’s tensors, that belong to two-element set 
U = {A, B}. Total volumes of both materials in 
the mixture are given; they amount to m and 
1−m respectively. We introduce the notion of 
LmU for the set under consideration. 
 
Mathematical structure of LmU in the frame of 
two-dimensional elasticity problem is due to 
[Lurie and Cherkaev (1986)] where the set LmU 
is described as the result of an iterative process 
  (1) kkmUL Λ=

→∞
lim

where Λk stands for the set of all layered 
laminates of kth rank obtained by single 
lamination of two arbitrary (k-1)th rank 
laminates in the direction determined by vector 
nk. By the notion of “layering” it is stated that 
laminated materials can be assumed to be 
homogeneous at each step of forming the 
laminate. Another key feature is the 
monotonicity of lamination process, namely 
U ≡ Λ0 ⊂ ... ⊂ Λk ⊂ ... ⊂ LmU. 
 
Laminate composites prove they utility in such 
problems as the description of GmU, i.e. the set 
of all composites being an arbitrary mixture of 
basic materials or certain structural design 
problems solutions such as the compliance 
minimization problem of plates, see [Lewiński 
and Telega (2000)]. In the latter the optimal 

energy density of the composite is locally 
attained on the set of so-called sequential 
laminates, i.e. layered laminates obtained by 
consecutive lamination with pure material. The 
set of such laminates is well examined, see for 
instance [Avellaneda 1987], but comparing the 
theoretical results of the last-mentioned paper 
and these concerning the explicit description of 
GmU we conclude that for the purpose of 
covering this last set layered laminates need to 
be considered in the analysis. This in turn may 
open the way to obtain optimal laminate 
topologies in elasticity problems different from 
those based on local energy minimization. 
 
 

2. THE SCOPE OF THE WORK 
 

The research of explicit characterization of GmU 
or the problem of attainability of its boundary 
∂GmU on finite laminate microstructures can be 
more precisely directed or narrowed thanks to 
certain elasticity problems solutions, that 
describe some subsets of GmU or its estimates 
PmU, such that GmU ⊂ PmU. In this work we 
seek the microstructural parameters of kth rank 
layered laminate H∗k ∈ Λk ⊂ LmU, k → ∞ whose 
moduli optimally approximate some H ∈ ∂GmU 
or H ∈ PmU. 
 
Formula for effective tensor of two-phase 
layered laminate, see [Lurie et al. (1984)], reads 

[ ] )()()( T1
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where: 
H∗k – kth rank laminate constitutive tensor, 
H1, H2 – (k-1)th rank laminate constitutive 
tensors, ∆H = H2 − H1. 
Π – projector on the space of possibly 
discontinuous components of second order 
tensor appearing in the description of the 
elasticity problem. The discontinuity line Γ 
separates material H1 from H2. The lamination 
direction vector nk is perpendicular to that line. 
m1, m2 – volumes of materials H1 and H2 in the 
kth rank lamination, m1 + m2 = 1. 
 
The algorithm of the procedure for finding 
optimal tensor H∗k consists of the following 
Step 0: 
- Let A, B be basic Hooke’s tensors and H the 
approximated one. 
- Let k be the lamination rank. We set k = 1. 
- Let 

  
],...,,[

],...,,[

210

210

r

r

rirr

rirr

mmm=

=

m

n ϕϕϕ
  (3) 

where ir = 2k-r, r = 1... k, denote vectors of initial 
values of lamination direction angles and 
material volumes in consecutive laminations 
respectively. Here mri is the volume of one of 
the (r-1)th rank laminate in ith laminate of rth 
rank; volume of the second laminate in this 
lamination amount to 1− mri. Total volumes of 
basic materials in kth rank laminate are given as 
m and 1−m. 
- Effective tensors of laminates of ranks 1 to k 
are given by n0, m0 and (2). 
Step 1: 
If for fixed ε  
  ε<− ∗kHH  (4) 
holds, we terminate the procedure, otherwise we 
proceed to the second step. 
Step 2a: 
- We compute the new values of lamination 
direction angles and material volumes and we 
define vectors n1, m1 similarly to (3). If for 
fixed δ we have 

 
∑

=

−

==

=

>−∨>−

k

i

ik

idiidi

d
1

10,...,110,...,1

2

)(max)(max δδ mmnn
 (5) 

then we use n1, m1 and (2) for effective tensor, 
we set n0 := n1, m0 := m1 and we pass to the first 
step. 
Step 2b: 
If (5) does not hold we set k := k + 1 and we 
pass to step 0. 
Notice 1: 
The internal structure of tensor H can be 
restricted by additional symmetry constraints, 
e.g. isotropy. For dealing with such additional 

property two ways of approximation are 
available. Namely, not only “the best 
approximate laminate” can be determined but 
also the one whose constitutive tensor is subject 
to the same restrictions as H. In the modified 
procedure for the latter problem the 
representation of H∗k is controlled by checking 
the required symmetry in its first step and 
restricting the update of n and m in step 2a. 
Symmetry criteria for two-dimensional Hooke’s 
tensors are easy to analyze by using the isotropic 
decomposition of these tensors and by 
determining the set of its independent invariants. 
Vanishing of certain invariants means “the 
passage” of the tensor to the higher symmetry 
class, see [Blinowski et al. (1996)]. 
Notice 2: 
The procedure can be easily modified also to 
deal with the problem of characterization of the 
set Λk for any fixed k. 
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1. PROBLEM FORMULATION

Let us consider a physical system which the state

equation is of the form

dx

dξ
= f(x, u, ξ), (1)

where x(ξ) ∈ R
n, u(ξ) ∈ Uad ⊂ R, ξ ∈ [ξ0, ξ1],

f is a vector function that is differentiable in x

and ξ with continuous derivatives. The equation

(1) with the boundary conditions

x(ξ0) = x0, x(ξ1) = x1 (2)

can describe statics and kinematics of the sys-

tem. In such situation the vector x represents ge-

ometrical variables along the section [ξ0, ξ1], Uad

stands for the set of admissible controls and it is

usually determined by geometrical and strength

constraints. Existence of the contraints secures

the solutions of (1) the proper physical meaning.

One wishes to determine the function u defined

in [ξ0, ξ1], which minimizes the cost function J :

J(u) =

∫ ξ1

ξ0

f0(x, u)dξ. (3)

Here f0 is a given function from the same class

as f . The cost function may represent displace-

ment of a chosen point, volume of an element,

etc.

In order to solve the formulated problem we

can use the Pontryagin maximum principle, see

Boltianski [2], Pontryagin et al. [4] and also

Gorecki [3], Mitkowski [5]. In this approach the

key role plays the Hamiltonian

H(λ, x, u) =

n∑
i=0

λifi(x, u), (4)

where the vector of adjoint variables λ =

[λ0, λ1, . . . , λn] is such that

dλi

dξ
= −

∂H(λ, x, u)

∂xi

, i = 1, 2, . . . , n (5)

and

dλ0

dξ
= −f0(x, u). (6)

The principle states that the Hamiltonian (4) must

be maximized over Uad. If x∗, u∗ is a solution

of the optimal control problem, then

H(λ∗, x∗, u∗) ≥ H(λ, x, u) (7)

for all u ∈ Uad.

2. PRELIMINARY RESULTS

In the previous section the optimization problem

has been formulated. The problem consists of

finding a pair consisting of the optimal control

u∗(ξ) and the corresponding optimal trajectory

x∗(ξ). It will be shown that such approach can be

applied to shape optimization of many mechani-

cal systems. See also the works of Atanackovic

[1], Mitkowski and Skruch [6], Skruch [7], Sze-

fer and Mikulski [8, 9].

There are several limitations concern conver-

gence, uniqueness, stability and existence of so-

lution. A general proof is very often impossible.

Therefore the main focus in this paper will be put

on the numerical solutions and methods that can

be used to solve the shape optimal control prob-

lem. The computer program has been designed

in MATLAB-Simulink environment. Using this

program we will try to find optimal shapes for

beams and arches.
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3. EXAMPLE

To illustrate our theory we consider a single span

beam with rectangular cross-section working un-

der self-weight (Fig. 1). The height of the cross-

section is taken as the control variable. The de-

flection at the end point is the optimality crite-

rion. Side conditions concern strength constrains

and geometry are imposed on the dimensions of

the cross-section. The statics and the kinematics

of the beam can be written using equations (1),

(2). The deflection of the end point can be ex-

pressed by the cost function (3).

The Pontryagin method can be used for solving

 

 

h(ξ)

b

l

Fig. 1. Single span beam under self-weight

the formulated tasks of optimization. To find ef-

fectively the optimal control u(ξ) = h(ξ), it is

necessary to solve the system which consists of

nonlinear ordinary differential equations of the

first order with the boundary conditions defined

at initial and end points, i.e. for ξ = 0 and ξ = l

(see Mitkowski and Skruch [6], Skruch [7], Sze-

fer and Mikulski [8]). The solution of this system

is possible only in a numerical way.

The algorithm of the numerical solution of the

problem has be design using MATLAB-Simulink

environment. The written program has been used

in a series of computations. The results of these

computations are presented in Fig. 2.
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1. INTRODUCTION

The topological sensitivity analysis [1, 4] gives

the topological asymptotic expansion of a cost

functional with respect to an infinitesimal do-

main perturbation. However, for practical appli-

cations, it is necessary to deal with perturbations

of finite size. This issue was addressed in our

previous work [2], where we have introduced a

definition for the second order topological deriv-

ative, which provides a good estimation for the

cost functional even for very large holes. There-

fore, as a natural sequence of our work, in the

present paper we calculate first and second order

topological derivative for inclusions.

Let us consider an open bounded domain Ω ⊂

R
2, with a smooth boundary ∂Ω. If the domain

Ω is perturbed by introducing a small inclusion

represented by Bε, which is a ball of radius ε

centered at point x̂ ∈ Ω, we have a perturbed

domain Ωε ∪Bε, where Ωε = Ω−Bε. Then, the

topological asymptotic expansion of a given cost

functional ψ may be expressed as

ψ(Ωε ∪Bε) = ψ(Ω) + f1(ε)DTψ

+ f2(ε)D
2
Tψ + R(f2(ε)) , (1)

where f1(ε) → 0, f2(ε) → 0 when ε → 0+,

f2(ε) ∈ o(f1(ε)) and R(f2(ε)) ∈ o(f2(ε)).

Thus, DTψ and D2
Tψ are the first and second

order topological derivative of ψ, respectively.

In this work, we apply the Topological-Shape

Sensitivity Method developed in [3] to calcu-

late DTψ and D2
Tψ for the total potential en-

ergy associated to the Laplace equation in two-

dimensional domain. Finally, we present some

numerical experiments showing the influence of

the second order term in the topological asymp-

totic expansion for different values of the thermal

conductivity coefficient of the inclusion.

2. TOPOLOGICAL ASYMPTOTIC
FOR THE LAPLACE EQUATION

The variational formulation for the Laplace equa-

tion associated to the perturbed domain Ωε ∪Bε

can be stated as: find uε ∈ Uε, such that

∫
Ωε∪Bε

kδ∇uε ·∇η+

∫
ΓN

q̄η = 0 ∀η ∈ Vε , (2)

where Uε and Vε are defined by

Uε = {uε ∈ H2(Ωε ∪Bε) : uε|ΓD
= ū}

Vε = {η ∈ H2(Ωε ∪Bε) : η|
ΓD

= 0} ,

and ΓD and ΓN are the Dirichlet and Neumann

boundaries, such that ∂Ω = ΓD∪ΓN , with ΓD∩

ΓN = ∅; ū and q̄ are the temperature and heat

flux prescribed on ΓD and ΓN , respectively. In

addition, the material property kδ is defined, for

δ ∈ R
+, as

kδ = k ∀x ∈ Ωε and kδ = δk ∀x ∈ Bε . (3)

Taking the associated total potential energy as

cost functional, that is

ψ(Ωε ∪Bε) =
1

2

∫
Ωε∪Bε

kδ |∇uε|
2
−

∫
ΓN

q̄uε . (4)

and after applying the Topological-Shape Sen-

sitivity Method we get the following results for

f1(ε) = πε2 and f2(ε) = πε4

DTψ = −k
1 − δ

1 + δ
|∇u (x̂)|2 , (5)

D2
Tψ =

1

2
k
1 − δ

1 + δ
det∇∇u (x̂) , (6)

where function u is solution of eq. (2) for ε = 0.

3. NUMERICAL EXPERIMENTS

Let us consider a body represented by Ω =

(0, 1) × (0, 1), with ū = 0 on ΓD1
∪ ΓD2

, and
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q̄1 = 1 on ΓN1
, q̄2 = 2 on ΓN2

and q̄ = 0

on the remainder boundary, as shown in fig.

(1, where a = 0.2). This body is perturbed

by introducing inclusions with center at x∗ =

(0.5, 0.5), where δ ∈ {1/16, 1/4, 1/2, 2, 4, 16}

and k = 1. Then, for each value of δ, we take

ε ∈ {0.01, 0.02, 0.04, 0.08, 0.16}. From these

values of ε and δ, we compute the topological

asymptotic expansion associated to the domain

Ω at x∗ considering the following estimates

ψ(Ωε ∪ Bε) ≈ ψ(Ω) + f1(ε)DTψ . (7)

ψ(Ωε∪Bε) ≈ ψ(Ω)+f1(ε)DTψ+f2(ε)D
2

Tψ . (8)

Then, in order to compute the cost functional

ψ(Ωε ∪ Bε), we effectively insert the inclusions

with center at x∗. Finally, from these results, we

can compare the accuracy obtained from both

estimates given by eqs. (7, 8).

W

a
a

a
a

G
D

2

G
D

1

G
N

2

G
N

1

x*

Fig. 1. example.

The behavior of the topological asymptotic

expansion as a function of ε, evaluated at x∗,

is shown in figs. (2-4) for different values of δ.
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Fig. 2. Estimate of ψ(Ωε ∪ Bε) for δ ∈ {1/2, 2}.
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Fig. 3. Estimate of ψ(Ωε ∪ Bε) for δ ∈ {1/4, 4}.
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Fig. 4. Estimate of ψ(Ωε ∪ Bε) for δ ∈ {1/16, 16}.

4. CONCLUSIONS

In this work, we have calculated the first and sec-

ond order topological derivatives for the total po-

tential energy associated to the Laplace equation

in two-dimensional domain, which was perturbed

through the insertion of a small inclusion. Then,

we have presented some numerical experiments

showing that the estimate considering the second

order topological derivative remains precise even

for very large inclusions, allowing to deal with

perturbations of finite size.
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1. INTRODUCTION

We develop the dynamic programming approach
for a family of infinite horizon boundary con-
trol problems with linear state equation and con-
vex cost. We prove that the value function of
the problem is the unique regular solution of the
associated stationary Hamilton–Jacobi–Bellman
equation and use this to prove existence and
uniqueness of feedback controls. The idea of
studying this kind of problem comes from eco-
nomic applications, in particular from models of
optimal investment with vintage capital. Such
family of problems has already been studied in
the finite horizon case in (S. Faggian, 2005,
2007). The infinite horizon case is more difficult
to treat and it is more interesting from the point
of view of economic applications, where what
mainly matters is the behavior of optimal trajec-
tories and controls in the long run. The study of
infinite horizon is here performed through a non-
trivial limiting procedure from the corresponding
finite horizon problem.

2. THE ECONOMIC PROBLEM

We motivate the study of the (abstract) optimal
control problem by means of the application to
optimal investment with vintage capital. Such
an applied problem can be described as follows:
the state variable is the amount of capital goods
(technologies) implied to obtain some product to
be sold on the market; controls are investments
in technologies; the problem of the firm is that
of choosing investments (both in new and older
technologies), in order to maximize their profits
over a infinite interval of time.

The crucial assumption, with respect to ap-
plied problems of the same kind, is that capi-
tal goods depend on two variables, namely time

and age, as introduced by (E. Barucci, F. Gozzi).
The state equation representing the capital accu-
mulation process is then a linear PDE, with both
distributed and boundary controls (resp., invest-
ments in older and new capital goods). For (τ, s)
in ]t,+∞[×]0, s̄]

∂y(τ, s)
∂τ

+
∂y(τ, s)

∂s
+ µy(τ, s) = u1(τ, s),

where the unknown y(τ, s) represents the amount
of capital goods of age s accumulated at time
τ , µ > 0 is a depreciation factor, and u1 :
[t, +∞[×[0, s̄] → R is the investment at time τ

in capital goods of age s (hence, the distributed
control). The equation is coupled with some
boundary condition

y(τ, 0) = u0(τ), τ ∈]t,+∞[

where u0 : [t, +∞[→ R is the investment in new
capital goods (u0 is the boundary control), and
some initial condition

y(t, s) = x(s),

for s ∈ [0, s̄] with t > 0 the initial time,
s̄ ∈ [0,+∞] the maximal allowed age, and
x ∈ L2(0, s̄) the initial amount of capital goods.

The problem is then reformulated into ab-
stract terms, yielding a linear ODE in Hilbert
spaces and the associated infinite dimen-
sional Hamilton–Jacobi–Bellman equation, and
to which the following class of problems apply:

y′(τ) = Ay(τ) + Bu(τ), τ ∈]t,+∞[

with initial condition

y(t) = x ∈ H

where H is the state space (L2(0, s̄) in the appli-
cation), y is the trajectory, U is the control space

87



and u is the control (u = (u0, u1) in the appli-
cation), A : D(A) ⊂ H → H is the infinites-
imal generator of a strongly continuous semi-
group of linear operators {eτA}τ≥0 on H , and
the control operator B is linear and unbounded,
say B : U → [D(A∗)]′. The objective functional
is of type

J∞(t, x, u) =
∫ +∞

t
e−λτ [g0 (y(τ)) + h0 (u(τ))] dτ

g0 and h0 both convex functions, and the asso-
ciate HJB equation is then of type
−λψ(x) + (ψ′(x) | Ax)H+

−h∗0(−B∗ψ′(x)) + g(x) = 0, x ∈ H

(h∗0 indicates the Légendre transform of the con-
vex function h0.)

It is worth remarking that the presence of the
boundary control yields an unbounded control
operator in the abstract state equation and a dis-
continuous Hamiltonian.

3. THE LIMITING PROCEDURE

The problem with infinite horizon is discussed
by means of an associated family of finite hori-
zon problems, so that we make use of the results
proved in (S. Faggian, 2005, 2007), and a non
trivial limiting procedure. The technique is not
new, as Barbu and Da Prato introduced it in the
case of distributed control, but the discontinuities
caused by the presence of boundary controls plus
the non analiticity of the semigroup involved in
the state equation make the job harder.

4. CONCLUSIONS

The main results that we were able to obtain are
the following: 1) the value function of the op-
timal control problem is the unique regular so-
lution of the associated HJB equation, and it is
obtained as the limit of the value functions of
finite horizon problems; 2) there exists a unique
optimal feedback strategy, which we can write
in terms of the gradient of the value function.
Moreover we are able to establish the connec-
tions between finite and infinite horizon value
functions. WE also intend, in the near future, to
apply the results to the study of quality properties
of both optimal strategies and trajectories in the

particular case of optimal investment with vin-
tage capital, possibly deriving some meaningful
economic interpretation.
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1. INTRODUCTION

Consider the Lur’e feedback control system in

Figure 1, which consists of a linear part described

by
{

ẋ(t) = A[x(t) + du(t)]

y(t) = c#x(t)

}

, (1)

and a scalar static controller nonlinearity f :

R → R. It is assumed that:

�y(t)u(t)

PLANT

ẋ = A(x+ du)
x(0) = x0

y = c#x

�
��
��

��0

+

CONTROLLER

f

�−

�

Fig. 1. Lur’e feedback system

� A : (D(A) ⊂ H) −→ H generates a linear

exponentially stable (EXS), C0–semigroup

{S(t)}t≥0 on a Hilbert space H with a scalar

product 〈·, ·〉H,

� y is a scalar output defined by an A–bounded

linear observation functional c# (bounded on

DA, i.e the space D(A) equipped with the

graph norm of A, here equivalent to ‖x‖A :=

‖Ax‖H). The restriction of c# to D(A) is

representable as c#x = 〈h,Ax〉H for every

x ∈ D(A) and some h ∈ H, or shortly

c#
∣

∣

D(A)
= h∗A.

� d ∈ D(c#) ⊂ H is a factor control vector,

u ∈ L2(0,∞) is a scalar control function.

The closed–loop system is described by the ab-

stract nonlinear differential equation

ẋ(t) = A
{

x(t) − df
[

c#x(t)
]}

(2)

2. WELL–POSEDNESS

We examine conditions under which the nonlin-

ear semigroups theory applies to (2).

Theorem 2.1. Assume that there exist k1, k2 ∈

R such that:

(i) f : R −→ R satisfies the incremental sector

condition

−∞ < k1 <
f(y1) − f(y2)

y1 − y2
< k2 <∞

∀y1, y2 ∈ R, f(0) = 0
(3)

(ii) with

q := k1k2, e := −
k1 + k2

2
+ k1k2c

#d,

δ := (1 − k1c
#d)(1 − k2c

#d) =

= 1 + 2ec#d− q
(

c#d
)2

≥ 0

the linear operator inequality

[
(

A−1
)∗

H + HA−1 − qhh∗ Hd− eh

d∗H− eh∗ −δ

]

≤ 0
(4)

holds for some H ∈ L(H), H = H∗ ≥ ηI >

0.

Then the single–valued operator

Ax := A
[

x− df(c#x)
]

,

D(A) =
{

x ∈ D(c#) : x− df(c#x) ∈ D(A)
}

,
(5)
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in the RHS of (2), is dissipative with respect

to an equivalent scalar product 〈x1, x2〉e :=

〈x1,Hx2〉H and, if additionally, c# is admissible

and the transfer function of (1) ĝ is in H∞(C+),

then it satisfies the range condition

R(λI −A) = H ∀λ > 0 . (6)

Furthermore, A is demiclosed and densely de-

fined, i.e. D(A) = H. Finally, for x0 ∈

D(A), (2) has a unique strong solution x ∈

W1,∞([0,∞),H) (the Sobolev space of abso-

lutely continuous functions x(t) ∈ H with both

x and ẋ in L∞((0,∞),H)) and the output y

of the Lur’e feedback system of Figure 1 is in

L∞(0,∞).

Next we give a criterion of solvability of the

linear operator inequality (4) in the nonsingular

case δ > 0.

Lemma 2.1. If the observation functional c# is

admissible and exactly observable, ĝ ∈ H∞(C+)

and there exist k1, k2 > k1 such that the

frequency–domain inequality of the circle–type

holds,

1 + (k1 + k2)Re
[

ĝ(jω)
]

+

+k1k2

∣

∣ĝ(jω)
∣

∣

2
≥ η > 0 ∀ω ∈ R

(7)

then there exists H ∈ L(H), H = H∗ ≥ ηI > 0,

satisfying (4).

3. STABILITY: coercive case

Our results lead to a ”coercive” version of a circle

criterion.

Theorem 3.1. Let the assumptions of Lemma

2.1 hold and let for the given k1 and k2 ∈ R

the incremental sector condition (3) be satisfied.

Moreover let d be an admissible factor control

vector. Then the null equilibrium of (2) is glob-

ally strongly asymptotically stable.

This result, up to some extent, coincides with

that of (Grabowski and Callier, 2006).

4. STABILITY: non-coercive case

The resolvent of the closed–loop operator A has

a representation

(λI−A)−1z = (λI −A)−1z
︸ ︷︷ ︸

linear part

−
[

λ(λI −A)−1d− d
]

f ◦ [IR + ĝ(λ)f ]−1 {

h∗
[

λ(λI −A)−1z − z
]}

︸ ︷︷ ︸

nonlinear part

i.e. it splits into the infinite–dimensional part,

the resolvent of an open–loop linear operator A

and the nonlinear part, given by the second com-

ponent. Hence, the resolvent (λI−A)−1 of A is

compact, provided that A−1 is a compact opera-

tor, or equivalently A has a compact resolvent.

We are in position to recall the result of

(Dafermos and Slemrod, 1973, Theorem 3).

Lemma 4.1 (Dafermos and Slemrod). If A−1

is a compact operator then all closed–loop tra-

jectories, starting from D(A) are precompact.

A ”noncoercive” version of the circle criterion

involves the LaSalle invariance principle – see

Grabowski and Callier (2007) for more details.

Theorem 4.1. Let the assumptions (i) and (ii) of

Theorem 2.1 hold, c# is admissible, the transfer

function of (1) ĝ is in H∞(C+), and A−1 is a

compact operator. Then the null equilibrium of

(2) is globally strongly asymptotically stable.

5. CONCLUSION

We have considered a SISO infinite–dimensional

Lur’e feedback control system. Elegant and self-

contained proofs were obtained by using non-

linear semigroups and reciprocal systems, giv-

ing Theorem 2.1 (well-posedness of the Lur’e

feedback system), Lemma 2.1 (solvability of the

linear operator inequality (4), and Theorem 3.1

(global strong asymptotic stability of the null

state of the Lur’e feedback system in the coer-

cive case). Moreover LaSalle’s invariance prin-

ciple enabled us to handle stability in the non-

coercive case – Theorem 4.1.
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1. INTRODUCTION

This lecture will report on the study of the long-
time behaviour of the solutions to a nonlinear
system of partial differential equations (PDE)
describing the interactions between a vibrating
plate and an enclosed acoustic field. Central is-
sues such as (i) well-posedness of the composite
PDE model, (ii) existence of a global attractor,
and (iii) finiteness of its fractal dimension will
be dealt with. The results achieved benefit from
recent developments in the analysis of the long-
time behaviour of evolution equations with non-
linear damping by I. Chueshov and I. Lasiecka,
which combine effectively the theory of (infinite-
dimensional) dynamical systems with techniques
and tools pertaining to control theory.
(The lecture is based on joint work with Igor
Chueshov, Kharkov University, Ukraine).

2. THE PROBLEM

Let Ω ⊂ Rn (n = 2 or 3) be an open bounded
domain with boundary Γ. Γ consists of two con-
nected parts: the active wall Γ0, which is flat and
whose dynamics is described by a thermoelastic
Berger plate (n = 3) or beam (n = 2) equation;
and the ‘hard’ wall Γ1. The PDE system under
consideration consists of the wave equation in the
variable z,

ztt + g(zt)−∆z + f(z) = 0 in Ω× (0, T )

∂z

∂ν
= 0 on Γ1 × (0, T )

∂z

∂ν
= ακ vt onΓ0 × (0, T ) ,

(1)

and an elastic equation representing the displace-
ment of the wall subject to thermal effects,

vtt − γ∆vtt + ∆2v +
[
Q−

∫
Γ0

|∇v|2dx
]
∆v

+βκzt|Γ0 + ∆θ = p0 in Γ0 × (0, T )

θt −∆θ = ∆vt in Γ0 × (0, T )

v = ∆v = 0 ; θ = 0 on ∂Γ0 × (0, T ) ,
(2)

to be supplemented with initial data (in the nat-
ural energy space). In the above system (1)–(2),
g(s) is a nondecreasing function describing the
dissipation which affects the wave component,
while f(z) represents a nonlinear force; ν is the
outer normal vector, α and β are positive con-
stants. The parameter 0 ≤ κ ≤ 1 enables us
to deal as well with the case of non-interacting
wave and plate equations (κ = 0). In subsys-
tem (2), the real parameter Q describes in-plane
forces applied to the plate, while p0 ∈ L2(Ω)
represents transversal forces; the boundary term
βκzt|Γ0 describes the acoustic pressure. It is well
known that the parameter γ > 0 (or γ = 0), cor-
responding to the presence (or absence) of rota-
tional moments, results in a hyperbolic-like (or
parabolic, respectively) character of the thermoe-
lastic system. Notice that the model considered
does not display additional (viscous, or struc-
tural) mechanical damping on the active wall Γ0.

The lecture will deal with the long-term be-
haviour of the coupled PDE system (1)-(2). Ac-
cordingly, the following questions will be ad-
dressed: (i) existence and uniqueness of the solu-
tion, (ii) existence of a global attractor, (iii) finite
dimensionality of the attractor, (iv) smoothness
of the attractor. It must be emphasized in particu-
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lar the central importance of property (iii), which
means that the permanent observed regime de-
pends on a finite number of degrees of freedom.
Indeed, the finite dimensionality of the attractor
is established under suitable growth conditions
on the nonlinearities g and f , which significantly
allow the semilinear term f to be of critical ex-
ponent. The technical key of this result is a spe-
cific stabilizability estimate, inspired to the ones
encountered in control theory, which enables us
to invoke the recent novel achievements concern-
ing the dimension of invariant sets; see, e.g., [2,
Ch. 4]. This method, developed by the authors
of [2], has been successfully used in the previous
work [1], dealing with the isothermal case.

It should be noted that the aforesaid estimate
holds uniformly with respect to the parameters
γ and κ; this brings about, e.g., bounds for the
attractor’s dimension which are independent of
both parameters—even though the dynamics of
the thermolastic system are different in the two
cases γ > 0 or γ = 0.
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1. ABSTRACT

The null controllability of parabolic operators in
bounded domains, with both boundary or locally
distributed controls, is a well-established prop-
erty, see, e.g., (Bensoussan et al., 1993) and
(Fattorini, 1998). Such a property brakes down,
however, for degenerate parabolic operators even
when degeneracy occurs on ”small” subsets of
the space domain, such as subsets of the bound-
ary.

This talk will discuss some null controllability
results that have been recently obtained for de-
generate parabolic operators via new global Car-
leman estimates. It will be also explained why,
in such a context, the use of suitable Hardy-type
inequalities becomes essential.
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Reconstruction of input signals to linear dy-
namical systems is an important problem. In
fact, in the time invariant case, it is a special
instance of the deconvolution problem. Sev-
eral algorithms have been proposed to achieve
this goal, which can be classified in two large
classes: off-line and on-line deconvolution algo-
rithms. Off-line deconvolution algorithms ac-
cumulate all the available pieces of informa-
tion and, after the process has come to an end,
these pieces of information are elaborated so
to obtain an estimate of the input signal. An
example of this is Tikonov method. On-line
deconvolution methods instead at the time t
produce an estimate v(t) of the unknown input
u at the time t solely on the basis of observa-
tions taken at previous times. Of course, solely
the algorithms in this class can be used for reg-
ulation and control purposes, see applications
in [2, 3] for the case of finite dimensional sys-
tems.

In this talk we present an extension of the
algorithm proposed in [1] (a paper concerned
with finite dimensional systems) to the on-line
identification of inputs to a class of distributed

systems. The class of systems we consider in
this talk is described in the time domain

ẋ = Ax + Bu , y = Cx

and we want to mimic thermal processes, i.e.
we assume A = A∗ generates a contraction
semigroup and B is a bounded linear opera-
tor from R (i.e. scalar input to the state space
X. Input and outputs are “colocated”. In the
usual sense, this would mean C = B∗ which
in particular implies internal observation, not
physically feasible. More in general our results
cover the case

y = B∗(−A)σx .

In concrete cases, this means that the output
y is an average, on a part of the boundary, of
the heat flux.

We shall present an algorithm for the on-line
reconstruction of u based on measures taken on
the output y. In the ideal case of noiseless ob-
servations, the algorithm constructs a function
vα which converges to u in L2(0, T ) for every
T > 0 for α → 0+ (the case of noisy mea-
sures is considered too). This is a “consistency
results” which justifies the choice of vα, with
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small α, as an approximation of the unknown
input u.

As a first step, the proof is naturally per-
formed in the time domain, i.e. state space
techniques, under quite restrictive assump-
tions. A second step will remove such re-
strictive assumptions using a frequency domain
type of proof. It is thanks to these frequency
domain arguments that we can prove consis-
tency of the algorithm in the case of boundary
observations.

An interesting observation is that the fre-
quency domain proof depends on the fact that
a certain transfer function is positive real, and
this shows a connection of the on-line recon-
struction problem with the quadratic regulator
theory.
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Jérôme Le Rousseau

Laboratoire d’Analyse Topologie Probabilités
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Null controllability results of semilinear

parabolic equations can be obtained by means

of global Carleman estimates and a fix-point

method. Such a Carleman estimate for the heat

equation with smooth coefficients was derived by

Fursikov and Imanuvilov [5]. The fix-point ap-

proach was introduced for semilinear equations

simultaneously by Barbu [1] and Fernandez-Cara

and Zuazua in [4] to treat superlinear terms. It

was generalized by Doubova et al. in [2] to treat

a non-linear terms that involve both the state and

the gradient.

In Doubova et al. [3], the authors treat the

case of piecewise regular coefficients and intro-

duce non-smooth Carleman weight functions as-

suming that they satisfy the same transmission

condition as the solution. To obtain observabil-

ity, they have to add some assumption on the

monotonicity of the coefficients: observability is

proved in the case where the control is supported

in the region where the diffusion coefficient is the

‘lowest’.

We shall show how the monotonicity condi-

tion can be relaxed in dimension one and ob-

tain a Carleman estimate with a regularity of the

coefficient in the principal part as low as BV.

We shall also prove a null controllability result

for the heat equation in dimension greater than

two in the case of stratified media, by means of

the technique of Lebeau and Robbiano [6], thus

proving that regarding controllability of parabolic

equations the monotonicity condition introduced

above [3] is not optimal. We shall present open

problems.

Part of this work is in collaboration with Assia

Benabdallah and Yves Dermenjian.
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In  this  paper,  we  consider  optimal  boundary 
control  problems  for  parabolic-hyperbolic 
systems  in  which  time delays  appear  in  the 
integral form in the state equations. The right- 
hand side of the state equation  and the initial 
and  boundary  conditions  are  not  continuous 
functions  usually,  but  they  are  measurable 
functions  belonging  into  L2 or  L∞  spaces. 
Therefore  we shall  look   the  solution  of  the 
time  delay  parabolic-hyperbolic  equation  in 
some  Sobolev  spaces  (  Lions  and  Magenes, 
1972).

Sufficient  conditions  for  the  existence  of  a 
unique solution of the time delay parabolic – 
hyperbolic  equation  with  the  Neumann 
boundary condition are proved – Theorem 1.

Consequently,  we  formulate  the  optimal 
control  problem.  The  performance  functional 
has  the  quadratic  form.  The  time  horizon  is 
fixed. Finally, we impose some constraints on 
the boundary control.

The  necessary  and  sufficient  conditions  of 
optimality  with  the  quadratic  performance 
functional and constrained control are derived 
for the Neumann problem -Theorem 2.

We  must  notice  that  the  conditions  of 
optimality derived above ( Theorem 2 ) allow 
us  to  obtain  an  analytical  formula  for  the 
optimal  control  in  particular  cases  only (e.g. 
there are no constraints on the controls ). This 
results from the following: the determining of 
the  adjoint  variable  p(v0) in  the  maximum 
condition from the adjoint equation is possible 
if  and  only if  we know the  state  variable  y0 

which  corresponds  to  the  control  v0.  These 
mutual connections make the practical use of 
the  derived  optimization  formulae  difficult. 
Therefore  we  resign  from   the  exact 
determining of the optimal control and we use 
approximation methods (Kowalewski, 2001).

As  an  example,  a  quadratic  programming 
method in a Hilbert space, which can be used 
in  solving  certain  optimization  problems  for 
time delay parabolic-hyperbolic systems is also 
presented.

The  results  presented  in  the  paper  can  be 
treated as an extension of the results obtained 
by Lions ( 1971 ) onto the case of additional 
time delays appearing in the integral form in 
the state equations.

In this paper we have considered the optimal 
time delay  parabolic-hyperbolic systems with 
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the  Neumann  boundary  conditions.  We  can 
also  consider  optimal  control  problems  for 
parabolic-hyperbolic  systems  with  the 
Neumann boundary conditions involving time 
delays.

We can also obtain estimates and a sufficient 
condition for the boundedness of solutions for 
time delay parabolic-hyperbolic  systems with 
specified forms of feedback control.

The ideas mentioned above will be developed 
in forthcoming papers.
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In differential zero-sum two-player games the

first player tries to minimize and the second

player to maximize a utility function that depends

on a state variable whose dynamics is governed

by a system of differential equations. Two classi-

cal approaches are via open loop and closed loop

strategies for the players. In this paper, we shall

mainly restrict ourselves to the open loop case

and a perfect knowledge of the state.

(M. C. Delfour and S. K. Mitter 1969) stud-

ied the dynamical Min-Sup problem for the fol-

lowing perturbed control process in R
n

dx

dt
(t) = A(t)x(t)+f(t, u(t))+ g(t, v(t)), (1)

where A(t) is a n × n measurable and bounded

matrix on [0, T ], f is in C1 in R
1+m and g is in

C1 in R
1+k (n, m, and k are integers ≥ 1), and

furthermore, (i) the initial state x0 at time 0 is

given, (ii) the admissible controllers F consist of

all Lebesgue measurable functions t 7→ u(t) on

the compact interval [0, T ] such that u(t) ∈ U ,

(almost everywhere on [0, T ]), where U is a com-

pact set in R
m, (iii) the admissible disturbances

G consist of all Lebesgue measurable functions

t 7→ v(t) on the compact interval [0, T ] such that

v(t) ∈ V , almost everywhere on [0, T ], where

V is a compact set in R
k, (iv) the cost func-

tion for each admissible u and v is given by

C(u, v) = G(x(T )), where G is a continuous

function in R
n.

The fundamental theory of closed loop

two-player zero-sum LQ games was given in

(P. Bernhard 1979) followed by the seminal book

in 1991 of (T. Başar and P. Bernhard 1995) that

covered the H∞-theory. They considered two-

player zero-sum game over the finite time inter-

val [0, T ] characterized by the quadratic utility

function

Cx0
(u, v)

def
= Fx(T ) · x(T )

+

∫ T

0
Q(t)x(t) · x(t) + |u(t)|2 − |v(t)|2 dt,

(2)

where x is the solution of the linear differential

system, the so-called state equation

dx

dt
(t) = A(t)x(t) + B1(t)u(t) + B2(t)v(t)

a.e. in [0, T ], x(0) = x0,
(3)

x0 is the initial state at time t = 0, u ∈

L2(0, T ; Rm), m ≥ 1, is the strategy of the first

player, and v ∈ L2(0, T ; Rk), k ≥ 1, is the strat-

egy of the second player. F is an n × n-matrix

and A, B1, B2, and Q are matrix-functions of ap-

propriate order that are measurable and bounded

almost everywhere in [0, T ]. Moreover, Q(t) and

F are positive semi-definite.

Given an initial state x0 in R
n at time t = 0,

the game is said to achieve its open loop lower

value if

v−(x0)
def
= sup

v∈L2(0.T ;Rk)

inf
u∈L2(0.T ;Rm)

Cx0
(u, v)

is finite. It is said to achieve its upper value if

v+(x0)
def
= inf

u∈L2(0.T ;Rm)
sup

v∈L2(0.T ;Rk)

Cx0
(u, v)

is finite. By definition v−(x0) ≤ v+(x0). The

game is said to achieve its open loop value if

its open loop lower value v−(x0) and upper

value v+(x0) are finite and v−(x0) = v+(x0).

The open loop value of the game will be de-

noted by v(x0). A pair (ū, v̄) in L2(0, T ; Rm)×
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L2(0, T ; Rk) is an open loop saddle point of

Cx0
(u, v) in L2(0, T ; Rm) × L2(0, T ; Rk) if for

all u in L2(0, T ; Rm) and all v in L2(0, T ; Rk)

Cx0
(ū, v) ≤ Cx0

(ū, v̄) ≤ Cx0
(u, v̄). An open

loop saddle point coincides with the classical no-

tion of a Nash equilibrium.

The very nice work of (P. Zhang 2005-1) es-

tablished the equivalence between the finiteness

of the open loop value of a two-player zero-sum

LQ game and the finiteness of its open loop

lower and upper values without a priori posi-

tive semidefiniteness assumption on the matrices

entering in the utility function, that is Q(t) and

F are not necessarily positive semi-definite. It

means that the duality gap, that is the difference

between the upper and the lower values of the

game, is either 0 or +∞. The reader is referred

to the above references for a detailed bibliogra-

phy of the vast and rich literature on dynamical

games.

In a recent paper (M. C. Delfour 2007)

completed and sharpened the results of

(P. Zhang 2005-1) for the finiteness of the lower

value of the game by providing a set of necessary

and sufficient conditions that emphasizes the

feasibility condition: (0, 0) is a solution of the

open loop lower value of the game for the zero

initial state.

Then he shows that, under the assumption of

an open loop saddle point in the time horizon

[0, T ] for all initial states, there is an open loop

saddle point in the time horizon [s, T ] for all ini-

tial times s, 0 ≤ s < T , and all initial states at

time s. From this he gets an optimality principle,

adapts the invariant embedding approach to con-

struct the decoupling symmetrical matrix func-

tion P (s), and shows that it is an H1(0, T ) so-

lution of the matrix Riccati differential equation.

Thence an open loop saddle point in [0, T ] yields

closed loop optimal strategies for both players.

Furthermore, a necessary and sufficient set

of conditions for the existence of an open loop

saddle point in [0, T ] for all initial states is the

convexity-concavity of the utility function and

the existence of an H1(0, T ) symmetrical solu-

tion to the matrix Riccati differential equation.

As an illustration of the cases where the open

loop lower/upper value of the game is −∞/+∞,

two informative examples of solutions to the Ric-

cati differential equation with and without blow-

up time are worked out.

In this paper we first go back to the case

where the lower value of the game is finite and

the upper value is infinite. In general, it is diffi-

cult to make sense of a Riccati differential equa-

tion. Yet, (P. Bernhard 1979) studied a family of

games where it is still possible to get such an

equation provided escape times are allowed at a

finite number of times. For that family there is

a closed loop-closed loop saddle point. Some

thoughts and hopefully new insights will be pre-

sented.

Finally, we shall extend the above re-

sults to infinite dimensional parabolic sys-

tems. For related work the reader is referred

to (I. Lasiecka and R. Triggiani 2000) and their

bibliography.
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1. INTRODUCTION

This paper deals with an endogenous growth
model with vintage capital and, more precisely,
with the AK model proposed in Boucekkine et al
(2005). In endogenous growth models the intro-
duction of vintage capital allows to explain some
growth facts but strongly increases the mathe-
matical difficulties. So far, in this approach, the
model is studied by the Maximum Principle; here
we develop the Dynamic Programming approach
to the same problem by obtaining sharper results
and we provide more insight about the economic
implications of the model. We explicitly find
the value function, the closed loop formula that
relates capital and investment, the optimal con-
sumption path and the long run equilibrium. The
short run fluctuations of capital and investment
and the relations with the standard AK model are
analyzed. Moreover we discuss possible exten-
sions of the model.
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1. Introduction

The solutions of a family of semilinear stochas-
tic equations in a Hilbert space with a fractional
Brownian motion are investigated. The nonlin-
ear term in these equations has primarily only a
growth condition assumption. An arbitrary mem-
ber of the family of fractional Brownian motions
can be used in these equations. Existence and
uniqueness for both weak and mild solutions are
obtained for some of these semilinear equations.
The weak solutions are obtained by a measure
transformation that verifies absolute continuity
with respect to the measure for the solution of
the associated linear equation. Some examples
of stochastic differential and partial differential
equations are given that satisfy the assumptions
for the solutions of the semilinear equations.

Evolution equations with a fractional noise
have been studied in recent years by several
authors, e.g. Duncan, Maslowski and Pasik-
Duncan; Grecksh and Ash; Maslowski and Nu-
alart; Hu, Oksendal and Zhang; and others.

Fractional Brownian motion denotes a family
of Gaussian processes with continuous sample
paths that are indexed by the Hurst parameter
H ∈ (0, 1) and that have properties that appear
empirically in a wide variety of physical phenom-
ena, such as hydrology, economic data, telecom-
munications, and medicine. Since some physical
phenomena are naturally modeled by stochastic

partial differential equations and the randomness
can be described by a fractional Gaussian noise,
it is important to study the problems of the so-
lutions of stochastic differential equations in a
Hilbert space with a fractional Brownian motion.
A significant family of these stochastic equations
is the set of semilinear equations, so it is impor-
tant to investigate the existence and the unique-
ness of the solutions of the equations and the
sample path properties of the solutions.

2. Main Topics

The mild solutions are obtained for various
semilinear stochastic equations with a fractional
Brownian motion. The cases H ∈ (0, 1/2) and
H ∈ (1/2, 1) are treated separately.

The following semilinear stochastic equation
is considered:

dX(t) = (AX(t) + F (X(t))) dt + ΦdB(t)
(1)

where t ∈ R+, X(t), X0 ∈ V , (B(t), t ≥ 0) is
a standard cylindrical fractional Brownian mo-
tion with the Hurst parameter H ∈ (0, 1), Φ ∈
L (V ), A : Dom(A) → V , Dom(A) ⊂ V , and
A is the infinitesimal generator of a strongly con-
tinuous semigroup (S(t), t ≥ 0) on V . The func-
tion F : V → V is nonlinear and for the applica-
tions to stochastic partial differential equations it
is more useful to assume that F is only defined
on a (dense) subspace of V . So, let (E, ‖· ‖E)
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be a separable Banach space that is continuously
embedded in V and F : E → V with X0 ∈ E.
Subsequently, it is assumed that F : E → V

is Borel measurable, Im(F ) ⊂ Im(Φ), for
G := Φ−1F , G : E → V , and

‖G(x)‖ ≤ k̂
(
1 + ‖x‖ρ

E

)

and

‖F (x)‖E ≤ k̂
(
1 + ‖x‖ρ

E

)

for each x ∈ E and some ρ ≥ 1. Furthermore,
it is assumed that there is a constant K̄ such
that for each pair (x, y) in Dom(A), there is a
z∗ ∈ ∂ ‖z‖E such that

〈Ax−Ay + F (x)− F (y), z∗〉E,E∗

≤ K̄ ‖x− y‖E

where ∂ ‖z‖E is the subdifferential of the norm
‖z‖E at the point z = x−y and 〈· , · 〉E,E∗ is the
pairing between E and E∗. The last inequality
is a one-sided growth condition that ensures the
absence of explosions of solutions of (1) in a
finite time. Some illustrative examples should
clarify its interpretation. The notion of a mild
solution of (1) is given now.

A mild solution, (X(t), t ≥ 0) of the equation
(1) is an E-valued process on a fixed probability
space (Ω,F ,P) with a given standard cylindrical
fractional Brownian motion satisfying

X(t) =S(t)X0 +
∫ t

0
S(t− r)F (X(r))dr+

∫ t

0
S(t− r)ΦdB(r). (2)

A primary goal in this paper is to verify existence
and uniqueness of a mild solution of (1). Since
the cases H ∈ (0, 1/2) and H ∈ (1/2, 1) require
different methods, they are treated separately.

The following three assumptions are made to
construct a solution of (1):
(H1). The semigroup (S(t), t ≥ 0) generated by
A is analytic on V and for each t ≥ 0, S(t)|E ∈
L (E) and ‖S(t)|E‖L (E) is bounded on compact
time intervals.
(H2). Φ ∈ L (V ) is injective and for T > 0, the
stochastic convolution process

(∫ t

0
S(t− r)ΦdB(r), t ∈ [0, T ]

)

has a version with C([0, T ], E) sample paths.
The case H ∈ (0, 1/2) is considered.

Theorem 1. Let H ∈ (0, 1/2) and (H1) and
(H2) be satisfied. Let Φ ∈ L (V ) be injec-
tive, Φ−1 ∈ L (E, V ) and (S(t)|E , t ≥ 0) be
a strongly continuous semigroup on E such that

|S(t)|E |L (E) ≤ ew̃t

for t ≥ 0 and some w̃ ∈ R. Let F : E → E be
continuous and satisfy

‖F (x)‖E ≤ k1

(
1 + ‖x‖ρ

E

)

for x ∈ E for some k1 ≥ 0 and ρ ≥ 1 and for
each pair x, y ∈ E, there is a z∗ ∈ ∂ ‖x− y‖E

where ∂ ‖z‖E is the subdifferential of the norm
‖· ‖E at z ∈ E such that

〈F (x)− F (y), z∗〉E,E∗ ≤ k2 ‖x− y‖E

for some k2 ∈ R, that is, F − k2I is dissi-
pative on V . Then there is one and only one
mild solution of (1) and its probability law on
Ω̌ = C([0, T ], E) is mutually absolutely contin-
uous with respect to the probability law of the
fractional Ornstein-Uhlenbeck process.

The Theorem (2) will be formulated for the
case H ∈ (1/2, 1).
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1. Introduction

Fractional Brownian motion denotes a family
of Gaussian processes with continuous sample
paths that are indexed by the Hurst parameter
H ∈ (0, 1) and that have properties that appear
empirically in a wide variety of physical phenom-
ena, such as hydrology, economic data, telecom-
munications, and medicine. Since some physical
phenomena are naturally modeled by stochastic
partial differential equations and the randomness
can be described by a fractional Gaussian noise,
it is important to study the problems of the so-
lutions of stochastic differential equations in a
Hilbert space with a fractional Brownian motion.
A significant family of these stochastic equations
is the set of semilinear equations, so it is impor-
tant to investigate the existence and the unique-
ness of the solutions of the equations and the
sample path properties of the solutions. If pri-
marily only some growth assumptions are made
on the nonlinear terms in the semilinear equa-
tions then it is natural to investigate weak solu-
tions, especially those that arise by an absolutely
continuous transformation of the measure of the
solution of the associated linear stochastic equa-
tion.

2. Main Topics

Existence and uniqueness for weak solutions
are obtained for some semilinear equations in

a Hilbert space with a fractional Brownian mo-
tion. The weak solution is obtained by a measure
transformation where absolute continuity with re-
spect to the measure for the solution of the asso-
ciated linear equation is verified. Some examples
of stochastic differential and partial equations are
given that satisfy the assumptions for the solu-
tions of the semilinear equations.

The following semilinear stochastic equation
is considered:

dX(t) = (AX(t) + F (X(t))) dt + Φ dB(t)
(2.1)

where t ∈ R+, X(t), X0 ∈ V , (B(t), t ≥ 0) is a
standard cylindrical fractional Brownian motion
with the Hurst parameter H ∈ (0, 1), Φ ∈ L(V ),
A : Dom(A) → V , Dom(A) ⊂ V , and A is
the infinitesimal generator of a strongly continu-
ous semigroup (S(t), t ≥ 0) on V . The function
F : V → V is nonlinear and for the applications
to stochastic partial differential equations it is
more useful to assume that F is only defined on
a (dense) subspace of V . So, let (E, ‖ · ‖E) be a
separable Banach space that is continuously em-
bedded in V and F : E → V with X0 ∈ E. Sub-
sequently, it is assumed that F : E → V is Borel
measurable, Im(F ) ⊂ Im(Φ), for G := Φ−1F ,
G : E → V , and
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‖G(x)‖ ≤ k̂
(
1 + ‖x‖ρ

E

)
(2.2)

and

‖F (x)‖E ≤ k̂
(
1 + ‖x‖ρ

E

)
(2.3)

for each x ∈ E and some ρ ≥ 1. Furthermore,
it is assumed that there is a constant K̄ such
that for each pair (x, y) in Dom(A), there is a
z∗ ∈ ∂‖z‖E such that

〈Ax−Ay+F (x)−F (y), z∗〉E,E∗ ≤ K̄‖x−y‖E

(2.4)
where ∂‖z‖E is the subdifferential of the norm
‖z‖E at the point z = x−y and 〈·, ·, 〉E,E∗ is the
pairing between E and E∗. The inequality (2.4)
is a one-sided growth condition that ensures the
absence of explosions of solutions of (2.1) in a
finite time. Some subsequent examples should
clarify its interpretation.

The notion of a weak solution of (2.1) is given
now.
Definition 2.1. A weak solution of the equation
(2.1) is a triple (X(t), B(t), (Ω̃, F̃ , P̃), t ≥ 0)
where (B(t), t ≥ 0) is a standard cylindrical
fractional Brownian motion in V that is de-
fined on the probability space (Ω̃, F̃ , P̃) and
(X(t), t ≥ 0) is an E-valued process satisfying

X(t) =S(t)X0 +
∫ t

0
S(t− r)F (X(r)) dr

+
∫ t

0
S(t− r)Φ dB(r) .

(2.5)

The equation (2.5) has a unique
weak solution if for any two weak solu-
tions (X(t), B(t), (Ω,F , P), t ≥ 0) and
(X̃(t), B̃(t), (Ω̃, F̃ , P̃), t ≥ 0), the processes
(X(t), t ≥ 0) and (X̃(t), t ≥ 0) have the same
probability law.

The following three assumptions are made to
construct a solution of (2.1):

(H1). The semigroup (S(t), t ≥ 0) generated by A

is analytic on V and for each t ≥ 0, S(t)|E ∈
L(E) and ‖ S(t)|E ‖L(E) is bounded on com-
pact time intervals.

(H2). Φ ∈ L(V ) is injective and for T > 0, the
stochastic convolution process(∫ t

0
S(t− r)Φ dB(r), t ∈ [0, T ]

)
has a version with C([0, T ], E) sample paths.

(H3). The function F : E → V in (2.1) is Borel
measurable, Im(F ) ⊂ Im(Φ) and the func-
tion G = Φ−1F : E → V satisfies

‖G(x)‖ ≤ k (1 + ‖x‖E)

for some k > 0 and all x ∈ E.
The following result verifies a weak solution

for H ∈ (0, 1/2).
Theorem 2.1. If H ∈ (0, 1/2) and conditions
(H1)-(H3) are satisfied, then the equation (2.1)
has a weak solution. If additionally F : E → E

and
‖F (x)‖E ≤ k1 (1 + ‖x‖E)

for some k1 > 0 and all x ∈ E, then the weak
solution is unique.

A corresponding result can be verified for the
case of H ∈ (1

2 , 1).
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Toward real-time model-based temperature assimilation for Structural
Health Monitoring

F. Bourquin, A. Nassiopoulos
Univ. Paris Est, LCPC, 58 bd Lefebvre, 75015 Paris

and Laboratoire Lagrange
bourquin@lcpc.fr, alexandre.nassiopoulos@lcpc.fr

Keywords: Optimal control, heat equation, inverse heat transfer, final time, duality

1. Introduction and main results

Temperature variations and their effects on struc-
tures act like perturbations for damage detec-
tion techniques based on vibration monitoring.
The elimination of temperature effects appears
as a bottleneck in this field. The work presented
here deals with the reconstruction of the thermal
field inside a structure when only some pointwise
temperature measurements along a time interval
[0, T ] are available. In view of real-time applica-
tions, we focus on the reconstructed temperature
at time T . A model-based least-square data as-
similation approach is proposed. The algorithm
builds upon optimal control theory applied to
the determination of both initial temperature and
boundary heat fluxes. Because of a known and
documented difficulty of the adjoint method, the
temperature at final time fails to converge.

It is shown numerically that minimizing the
performance index over a space of smooth
enough initial temperatures and boundary fluxes
(of H1 type in time) eliminates this difficulty.
Moreover, the proposed framework yields a both
accurate and stable final temperature.

The temperature field at any time results from
a standard postprocessing. This so-called ad-
joint method proves truely multi-dimensional and
compatible with all existing finite element soft-
wares.

In view of rapid inverse heat transfer for 3D
problems, duality is put to work. The space over
which to minimize the dual functional is of the
type (L2([0, T ]))m, where m denotes the number
of sensors. This opens the way to a potential
splitting that would distribute the computation
over the sensor network.

2. Problem statement

Consider a solid in a multidimensional domain
Ω with boundary ∂Ω. Assuming absence of in-
ternal heat sources and an initial state denoted
by θ0(x), the temperature field inside the solid is
given by the heat equation:

ρc
∂θ

∂t
− div(K grad θ) = 0 Ω× [0, T ]

(K grad θ) · ~n + αθ = Φ ∂Ω× [0, T ]
θ(x, 0) = θ0(x) Ω

(1)
Here, Φ(x, t) = g(x, t) + αθext where g denotes
an inward heat flux when Fourier-Robin condi-
tions are considered and θext is the external tem-
perature, ~n is the outwards normal vector on the
boundary, x ∈ Ω is the space variable, t ∈ [0, T ]
the time variable, ρ the mass density, c the heat
capacity and K the conductivity tensor of the
material.

Assume that m sensors are available inside
the structure at locations xk, k = 1..m. They
deliver the data {θd

k(t)}m
k=1, t ∈ [0, T ]. Based on

these measurements, the aim is to reconstruct the
temperature field over the time interval [0, T ], fo-
cusing on the accuracy of the reconstruction at
the final time T . One way to achieve this is to
try to determine the couple {θ0,Φ} of initial and
boundary conditions responsible for the measure-
ments.

The problem can be formulated in a least-
squares framework. In this approach, an itera-
tive procedure will be put to work to minimize
the difference between the given measurements
{θd

k(t)}m
k=1 and the value at sensor locations of

a reconstructed field. The inverse problem being
by itself mathematically ill-posed in the sense
of Hadamard, some regularization technique is
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needed in order to guarantee numerical stability
of the computational procedure even with noisy
input data. The problem thus consists in mini-
mizing a functional of the form

J({θ0,Φ}) =
1
2

m∑
k=1

∫ T

0

(
θ(xk, t)− θd

k(t)
)2

dt

+ ε
2‖{θ

0,Φ}‖2
X

(2)
Here, the last term in (2) stands for the so-called
Tikhonov regularization, ε being a small regular-
izing coefficient that provides extra convexity to
the functional J .

The functional space X guarantees the ex-
istence of a sufficiently smooth solution to (1).
‖ · ‖2

X denotes a suitable norm for X . The pair
{θ0,Φ} is referred to as the control variable and
X as the control space. It will be seen that the
choice of X has a crucial influence on the re-
sults. In what follows, two different choices will
be presented to illustrate this.

3. Numerical results

The results on figure 1 show the disadvantages
of the adjoint method in L2.

They concern a beam of length L to which a
given flux is prescribed at each end. All material
constants are set to 1. Some direct simulations
with an arbitrary input flux give measurements
on sensors located at L

5 , L
2 and 4L

5 respectively.
These measurements are then used to simulate
the reconstruction algorithm.

The temperature field reconstruction is of ac-
ceptable accuracy far from t = T , while the re-
construction of θ(x, T ), which is the most inter-
esting output in view of our application, is very
unsatisfactory (figure 1). This phenomenon is
due to the definition of the adjoint and is well
known in the literature (Alifanov; Hua). It will
be explained and an alternative definition of the
adjoint field enabled by a new choice of space X

and associated scalar product will be considered.

Fig. 1. Reconstruction in L2: final temperature

Fig. 2. Reconstruction in H1: intial and final tem-
perature

4. CONCLUSIONS

A three-dimensional extension of the computa-
tional framework will be presented for the dual
formulation of the reconstruction problem. Nu-
merical and experimental results obtained with a
block of concrete in a climate chamber will be
discussed.
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The development of practical computational schemes for optimization and control of nonnormal 
distributed parameter systems requires that one builds certain computational efficiencies (such as mesh 
independence) into the approximation scheme. In this talk we consider the convergence as well as mesh 
independence of the infinite dimensional version of the Kleinman-Newton algorithm. The Kleinman-
Newton algorithm is used to solve the algebraic Riccati operator equation that arises in the control of PDE 
systems. We consider some numerical issues concerning the application of the Kleinman-Newton 
algorithm to discretizations of infinite dimensional Riccati equations associated with the linear quadratic 
regulator (LQR) problem. We show that dual convergence and compactness play central roles in both 
convergence and mesh independence. We present numerical results using standard finite element and 
stabilizing Petrov-Galerkin approximations of convection diffusion equations to illustrate the theory. 
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We consider the following evolution equa-
tion describing the electric potential in a do-
main Ω:

−∂∆φ
∂t

= ∇ · (σ∇φ), (x, t) ∈ Ω× [0,∞),

φ(x, t) = 0, (x, t) ∈ ∂Ω× [0,∞),

φ(x, 0) = φ0(x), x ∈ Ω,

where σ ∈ L∞(Ω). We determine the change
in potential that results from letting the con-
ductivity σ tend to ∞ in a subdomain L ⊂ Ω
at t = 0+. This result is applicable to a
lightning discharge and the resulting change
in electric potential in the atmosphere. We
show that in L the potential at t = 0+ is
the constant φL = 〈∇φ0,∇Π〉Ω/〈∇Π,∇Π〉Ω
where

Π = 1 in L,
∆Π = 0 in Ω \ L,

Π = 0 on ∂Ω,

and 〈·, ·〉Ω is the L2(Ω) inner product

〈∇u,∇v〉Ω =
∫

Ω
∇u · ∇v dx. (1)

Outside of L, the change in potential at t =
0+ is the solution to the problem

∆ξ = 0 in Ω \ L,
ξ = 0 on ∂Ω,

ξ = φL − φ0 on ∂L.

The analysis hinges on recent results we have
established for a generalized eigenproblem of

the Laplacian: Find u ∈ H1
0 (Ω), u 6= 0, and

λ ∈ R such that

〈∇u,∇v〉L = λ〈∇u,∇v〉Ω

for all v ∈ H1
0 (Ω). It is proved that any f ∈

H1
0 (Ω) can be expanded in terms of orthog-

onal eigenfunctions for the generalized eigen-
problem. During the analysis, we present a
new inner product on H1/2(∂L) with the fol-
lowing properties: (a) the norm associated
with the inner product is equivalent to the
usual norm on H1/2(∂L), and (b) the double
layer potential operator is self adjoint with
respect to the new inner product and com-
pact as a mapping from H1/2(∂L) into itself.
The analysis identifies four classes of eigen-
functions for the generalized eigenproblem:

1. The function Π which is 1 on L and har-
monic on Ω \ L; the eigenvalue is 0.

2. Functions in H1
0 (Ω) with support in Ω \L;

the eigenvalue is 0.
3. Functions in H1

0 (Ω) with support in L; the
eigenvalue is 1.

4. Excluding Π, the harmonic extension of
the eigenfunctions of a double layer poten-
tial on ∂L. The eigenvalues are contained
in the open interval (0, 1). The only possi-
ble accumulation point is λ = 1/2.
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1. Abstract

The feedback control of fluid flows using model
reduction techniques has been studied for the past
decade. However, the challenge of computing
feedback control laws for the full-order problem
has limited the assessment of these control tech-
niques to determine their effectiveness in repre-
senting the optimal feedback controller. How-
ever, the availability of the latest generation of
high-performance computers has now made these
comparisons possible. In this talk, we investi-
gate the effectiveness of the model reduction ap-
proached based on proper orthogonal decomposi-
tion and Galerkin projection (POD/Galerkin) and
a related controller reduction approach. Numer-
ical results comparing these popular approaches
with Riccati equation-based linear state feedback
will be presented. One study will examine the
effectiveness of the reduced-order modeling ap-
proach as the number of reduced-basis functions
are increased. Case studies will include both lin-
ear and nonlinear PDE examples motivated by
control of fluid flow.
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SUBOPTIMAL FEEDBACK CONTROL DESIGN OF CONSTRAINED
PARABOLIC SYSTEMS IN UNCERTAINTY CONDITIONS

BORIS S. MORDUKHOVICH 1

Abstract. The talk concerns minimax control problems for linear multidimensional
parabolic systems with distributed uncertain perturbations and control functions acting in
the Dirichlet boundary conditions. The underlying parabolic control system is functioning
under hard/pointwise constraints on control and state variables. The main goal is to design
a feedback control regulator that ensures the required state performance and robust stability
under any feasible perturbations and minimize an energy-type functional under the worst
perturbations from the given area. We develop an efficient approach to the minimax control
design of constrained parabolic systems that is based on certain characteristic features of
the parabolic dynamics including the transient monotonicity with respect to both controls
and perturbations and the turnpike asymptotic behavior on the infinite horizon. In this way,
solving a number of associated open-loop control and approximation problems, we justify an
easily implemented suboptimal structure of the feedback boundary regulator and compute
its optimal parameters ensuring the required state performance and robust stability of the
closed-loop, highly nonlinear parabolic control system on the infinite horizon.

The primary motivation for this study came from certain environmental models, in
particular, those developed within the Dynamical System and Environmental Projects of
the International Institute of Applied System Analysis (IIASA), Laxenburg, Austria.

1Department of Mathematics, Wayne State University, Detroit, Michigan 48202 (boris@math.wayne.edu).
This research was partly supported by the USA National Science Foundation under grants DMS-0304989
and DMS-0603846 and by the Australian Research Council under grant DP-0451168.
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Boundary exact and spectral controllabil-
ity and inverse problems on graphs are stud-
ied. We suppose that the wave equation is de-
fined on each edge of the graph, and standard
compatibility conditions are satisfied at the
internal vertices. We prove that the system is
exactly controllable if the graph is a tree and
the control is applied to all (or to all but one)
boundary vertices. Otherwise the system is
generally not exactly controllable but may be
spectrally controllable. The latter means that
the space of reachable states contains all finite
linear combinations of the eigenfunctions.

We discuss connections between controlla-
bility and inverse problems and show how to
recover a tree (its connectivity and the lengths
of the edges together with coefficients of the
wave equation) by given response operator or
Weyl matrix function.

We consider also null and spectral con-
trollability and inverse problems for the heat
equation on graphs.

The talk is based in part on joint work with
P. Kurasov and V. Mikhaylov.
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This talk will describe the analysis of certain variational principles for initial boundary value problems 
for parabolic-type equations. These variational principles are based on considerations of convex analysis 
and duality theory and extend earlier work of Brezis, Ekeland and the author. 

Direct methods will then be used to prove well-posedness results for these problems under very weak 
assumptions on the data. Examples illustrating new applications of these principles to classical initial 
value problems of continuum mechanics will be described. 
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The Stefan problem is a model for phase tran-
sitions in solid-liquid systems. In this paper, we
consider the two-phase Stefan problem with the
modified Gibbs-Thomson law

u = σH + δV on Γ(t), σ > 0, δ ≥ 0, (1)

and the kinetic condition

[d∂νu] = (`− [κ]u)V on Γ(t). (2)

Here Γ(t) denotes the unknown moving hyper-
surface that separates the liquid from the solid
phase, u is the temperature, H the mean curva-
ture of Γ(t), σ the surface tension coefficient,
δ the coefficient of kinetic undercooling, V the
normal velocity of Γ(t), ` the latent heat, [κ]
the jump of the heat capacities across Γ(t), and
[d∂νu] the jump of the heat fluxes across Γ(t).

Under appropriate boundary conditions we will
show that spheres (together with constant tem-
perature distributions) are the only equilbrium
states for this system, and we will characterize
the stability of these equilibria in dependence of
physical and geometric quantities.
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Chemically reacting mixtures represent a

framework for modelling of various complicated

processes in biology and chemistry. The model

proposed in (Rou05a; Rou05b; Rou06; Rou07)

uses incompressible framework with the barycen-

tric impulse balance. This “barycentric” ap-

proach is called the Eckart-Prigogine’s (Eck40;

Pri47) concept, simplifying phenomenologically

the description by considering only one tem-

perature and one velocity of the whole mixture

and having been awarded in the context of non-

equilibrium thermodynamics of dissipative struc-

tures by Nobel prize in chemistry in 1977; in the

compressible case, see also (ADM82; dGM62;

Gio99). For a comparison with less phenomeno-

logical Truesdell model (TrTo60) see (Sam07).

The incompressibility refers here both to each

particular constituent and, through a volume-

additivity hypothesis (i.e. Amagat’s law) also to

the overall mixture. To cover biological applica-

tions on a cellular or subcellular level where in-

tensity of electric field on cell membranes is very

high, the self-induced electrostatic field must be

considered, too.

We consider a 3-dimensional incompressible

flow of a mixture of L mutually reacting chemi-

cal ionic constituents; the `th-constitutent having

a specific charge z`, ` = 1, ..., L. Our model

consists in a system of 4+L+1+1 differential

equations combining the non-Newtonian modifi-

cation of the Navier-Stokes equation (balancing

the barycentric momentum %v) with the incom-

pressibility constraint div(v) = 0, the Nernst-

Planck equation modified for moving media (bal-

ancing the mass of particular constituents), the

heat equation (balancing the heat part cvθ of

the internal energy), and the quasistatic Poisson

equation for the electrostatic field (balancing the

electric induction ε∇φ):

%
∂v

∂t
− div

(
τ(Dv, c, θ) − %v⊗v

)
+∇π = −q∇φ, (1)

div(v) = 0, (2)

q = c·z, (3)

∂c

∂t
− div

(
D(c, θ)∇c + M(c, θ) ⊗∇φ

−c⊗v
)

= r(c, θ) , (4)

cv

∂θ

∂t
− div

(
κ∇θ − cvv θ

)
= τ(Dv, c, θ):Dv

+
(
D(c, θ)∇c + M(c, θ) ⊗∇φ

)
:

: (z ⊗∇φ) + h(c, θ), (5)

−div(ε∇φ) = q . (6)

The variables v, π, c, θ, and φ have the follow-

ing meaning:

v = (v1, v2, v3) barycenter velocity,

π pressure,

c = (c1, ..., cL) concentrations,

φ electrostatic potential,

θ temperature,

where the concentration vector c is to satisfy the

constraint

∀` = 1, ..., L : c`(t, x) ≥ 0 (7)

and

∑L
`−1

c`(t, x) = 1 for a.a. (t, x). (8)

The meaning of the data is:

τ = τ(Dv, c, θ) the stress tensor,

Dv = (∇v)>+∇v

2
symmetric velocity gradient,

% > 0 mass density,

z = (z1, ..., zL) charges of the constituents,
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q = c · z the total charge,

ε > 0 permitivity,

r = (r1, ..., rL) chemical production rates,

h heat production rate by chemical reactions,

D = [Dkl]
L
k,l=1

a diffusion matrix,

M = (M1, ...,ML) effective mobilities,

κ > 0 thermal conductivity, and

cv >0 heat capacity.

In terms of phenomenological diffusive fluxes j`,

(4) can be written as ∂c
∂t

+div(c⊗v−j`) = r(c, θ).

A standard “ansatz” for the these fluxes is

j` :=

L∑
k=1

Mk`(c)∇µk, (9)

where

µ` := ρ ln c` + z`φ (10)

is the electrochemical potential. These fluxes

should satisfy a zero-sum condition, i.e. the mo-

bility matrix [Mk`(c)] should satisfy

∀k = 1, ..., L, ∀c, c` ≥ 0,
∑L

`=1
c` = 1 :∑L

`=1
Mk`(c) = 0 (11)

because then obviously

L∑
`=1

j` =

L∑
`=1

L∑
k=1

Mk`(c)∇µk

=
L∑

k=1

L∑
`=1

Mk`(c)

︸ ︷︷ ︸
=0

∇µk = 0. (12)

This ensures the constraint (8) satisfied.

Moreover, by the celebrated (Nobel-prize

awarded) Onsager’s principle (Ons31), the ma-

trix [Mk`(c)] should be symmetric. An example

(proposed already by de Gennes (dGe80), an-

other Nobel prize winner) is

Mk`(c) := m`c`

(
δk` −

mkck∑L
l=1

mlcl

)
(13)

with m` being “actual” mobilities of particular

constituents (assumed to be) known from exper-

iments. It yields

Dk`(c) = ρm`

(
δk` −

mkc`∑L
l=1

mlcl

)
, (14)

M`(c) = m`z`c` − m`c`

∑L
k=1

mkckzk∑L
l=1

mlcl

. (15)

Existence of a (very) weak solutions of the sys-

tem (1)–(6) is proved for a non-Newtonian fluid

with τ(·, c, θ) having a p-polynomial coercivity

with p > 11/5. Positive definiteness of D(c) is

employed. Unfortunately, in the case (14), it may

fail if the mobilities m` vary too much but holds

if they are not too much mutually different, as

shown recently in (Hav07).
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In this talk we present well-posedness results for boundary value problems for the biharmonic 
equation with Whitney-Sobolev and Whitney-Besov data in VMO1 domains. These results are obtained 
through establishing the invertibility of the associated multiple layer potential operators on the 
aforementioned function spaces. 
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We derive Carleman type estimates for classical dynamical elasticity system with residual stress. The 
residual stress is described by general scalar second order operator which makes the system anisotropic. 
We derive Carleman estimates with second large parameter for general second order operators and use 
them to get estimates for systems. Applications include exact controllability and global uniqueness and 
stability of recovery of residual stress from one set of boundary measurements. 
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1. INTRODUCTION

Carleman estimates were developed in order
to prove uniqueness for non-hyperbolic Cauchy
problems for operators with non-analytic coeffi-
cients. More recently they have become powerful
tools for many problems in the control of par-
tial differential equations. The theory for scalar
equations is rather complete, however concern-
ing systems of equations the picture is less clear.
The only general result pertaining Carleman esti-
mates for systems of equations is due to Calderón
(1).

In this talk we will establish Carleman esti-
mates for certain first order systems. In contrast
to previous works (see for example (2),(3) and
the references therein) our result does not rely
on pseudo-differential operators or diagonaliza-
tion methods which allows for minimal smooth-
ness assumptions on the coefficients. This is
of some significance when considering nonlinear
problems. Moreover, the explicit nature of the
estimate makes the inclusion of boundary terms
possible.

2. THE RESULT

Consider the 4× 4 matrix partial differential op-
erator

A(x, ∂)u = (∇× u1 +∇u2,−∇ · u1)

of first order where u = (u1, u2) and u1 a vector-
valued function with three components and u2 a
scalar-valued function. Let Ω ⊂ R3 be an open
set and assume that ψ ∈ C2(Ω) with ∇ψ 6= 0 in
Ω. Set φ = esψ − 1 where s ≥ s0.

By elementary methods we will prove the fol-
lowing Carleman estimate. There exist constants
τ0 and C such that for τ ≥ τ0

τ

∫
Ω
e2τφ|u|2dx ≤ C

∫
Ω
e2τφ|A(x, ∂)u|2dx

for all compactly supported functions u ∈
C∞0 (Ω).

We will also discuss the case of variable co-
efficients

Aα(x, ∂)u = (∇× u1 + α∇u2,−∇ · (αu1))

where α ∈ C1(Ω) and the dynamic case, i.e. the
operator

P (x, ∂) =
(
∂t −A(x, ∂)
∂t +A(x, ∂)

)
acting on a vector-valued function with eight
components.

3. APPLICATIONS

We will show that our result for the first-order
system can be used to obtain Carleman estimates
for the stationary and dynamic system of elas-
ticity. These Carleman estimates will not only
bound the displacement vector but also its first-
order derivatives.
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NONLINEAR BOUNDARY CONTROL FOR A CLASS OF
1-D NONLINEAR PARABOLIC PDES
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Abstract. Certain classes of parabolic PDEs

that arise in chemical process control include

nonlinear Volterra series operators on the right

hand sides of the PDEs, with the spatial coor-

dinate as the integration variable. A stabiliz-

ing feedback law in the form of a Volterra se-

ries will be presented. The kernels of the series

are given through a sequence of hyperbolic PDEs

on spatial domains of increasing dimension and

dependent on the Volterra kernels of the plant

nonlinearity. We present a priori estimates for

the control kernels, the convergence analysis of

the Volterra nonlinear feedback operator, and nu-

merical results for several benchmark nonlinear

PDEs.

1. Introduction

Boundary control of linear parabolic PDEs is a

well established subject with extensive literature.

On the other hand, boundary control of nonlinear

parabolic PDEs is still an open problem as far as

general classes of systems are concerned.

Our method is a direct infinite dimensional

extension of the finite-dimensional feedback lin-

earization/backstepping approaches and employs

spatial Volterra series nonlinear operators. We

only sketch our method here; a two-part paper [3]

has been submitted presenting the method and

its properties in full detail, with examples. This

result solves open problem 5.1 in the Unsolved

Problems volume [1].

2. Volterra Series

Volterra series represent general solutions for

nonlinear equations and are widely studied in

the literature [2]. A (spatial) Volterra series is

defined as

F [u] =

∞
∑

n=1

∫ x

0

∫ ξ1

0
· · ·

∫ ξn−1

0

fn(x, ξ1, . . . , ξn)





n
∏

j=1

u(t, ξj)





×dξ1 . . . dξn, (1)

where fn is known as the n-th (triangular) kernel

of F .

3. Outline of the Method

We consider the stabilization problem for the

plant

ut = uxx + λ(x)u + F [u] + uH[u], (2)

ux(0, t) = qu(0, t) (3)

u(1, t) = U(t), (4)

where F [u] and H[u] are Volterra series and

U(t) the actuation variable. In [3] we show

how nonlinear plants found in applications can

be written in the form (2)–(4).

We solve the problem by mapping u into a

target system w which verifies

wt = wxx − cw, (5)

wx(0, t) = q̄w(0, t)

w(1, t) = 0, (6)

where q̄ = max{0, q}. For mapping u into w we

use a Volterra transformation

w = u − K[u]. (7)

In [3] we derive the equations that the ker-

nels kn of K in (7) verify. It is a set of linear

hyperbolic PDEs. For each kn, we get a PDE

evolving on a domain of dimension n + 1 and
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with a domain shape in the form of a “hyper-

pyramid,” 0 ≤ ξn ≤ ξn−1 . . . ≤ ξ1 ≤ x ≤ 1.

The equations can be solved recursively, i.e., first

for k1 (which verifies an autonomous equation),

then for k2 (which is coupled with k1) using the

solution for k1, and so on. We also show in [3]

that the Volterra series defined by the kn’s in

(7) is always convergent and invertible (at least

locally).

Once we have the kn’s, the stabilizing control

law is determined by (7) at x = 1

U(t) =

∞
∑

n=1

∫ 1

0

∫ ξ1

0
· · ·

∫ ξn−1

0

kn(1, ξ1, . . . , ξn)





n
∏

j=1

u(t, ξj)





×dξ1 . . . dξn. (8)

In [3], using the invertibility properties of K

and the exponential stability of (5)–(6), we show

that the origin of the closed-loop system (2)–(4)

with control law (8) is exponentially stable in

the L2 and H1 norms (at least locally). We also

illustrate this result with numerical simulations

of several examples of interest.
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Convolution/Evolution Equations-Representation
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Abstract. The convolution-evolution (semigroup) equation in a Hilbert
space:

Ẏ (t) = AY (t) +

t∫

0

L(t− σ)Ẏ (σ)dσ, t ≥ 0

abstracts the dynamics of a flexible structure under inviscid subsonic aero-
dynamic loading – the core of Aeroelasticity Theory. Our main result is to
show that by enhancing the Hilbert space it is possible to construct a pure
semigroup equation leading to the representation

Ż(t) = ACZ(t)

Y (t) = PZ(t)

where AC is the generator of a C0-semigroup over a Banach space, and P
is a projection. In particular the aeroelastic modes can thus be identified as
bonafide eigenvalues of the generator AC . We actually give a construction for
the semigroup generated by AC as well as for the resolvent.
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REGULARIZING EFFECTS OF NONLINEAR DAMPING IN
SUPERCRITICAL DEFOCUSING NONLINEAR WAVE EQUATIONS

Grozdena Todorova
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There are many results on global well-posedness and regularity for the equation utt−∆u+u5 = 0 in

R3 (the so-called critical case). In contrast, the global existence of smooth solutions in the supercritical

case p > 1 + 4
n−2 appears to be an open problem, even for the space dimension n = 3. We show that

semi-linear wave equations with a conveniently chosen nonlinear damping g(ut) and with defocusing

smooth nonlinearlities |u|p−1 u in the supercritical case p > 5 are globally well-posed in radially

symmetric Sobolev spaces Hk
rad(R

3)×Hk−1
rad (R3) for all integers k ≥ 3. The results apply to the case

k = 2 without the requirement of radial data. We emphasize that the damping is not stronger than

the nonlinearity and does not depend on the supercritical growth of the nonlinearity. The results also

extend to certain exponential nonlinearities. Finally, we obtain scattering results for radial initial data

in Sobolev spaces with k ≥ 2.
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UNIFORM STABILIZATION OF THE WAVE EQUATION ON
COMPACT SURFACES AND LOCALLY DISTRIBUTED DAMPING

V. N. DOMINGOS CAVALCANTI

Abstract. This work is concerned with the study of the wave equation on compact
surfaces and locally distributed damping, described by

utt −∆Mu + a(x) g(ut) = 0 on M× ]0,∞[ ,

where M ⊂ R3 is an oriented embedded compact surface without boundary, such that
M = M0 ∪M1, where

M1 := {x ∈M; m(x) · ν(x) > 0} and M0 = M\M1.

Here, m(x) := x − x0, (x0 ∈ R3 fixed) and ν is the exterior unit normal vector field of
M.

For i = 1, . . . , k, assume that there exist open subsets M0i ⊂ M0 of M such that
they are umbilical, or more generally, that the principal curvatures k1 and k2 satisfy
|k1(x) − k2(x)| < εi (εi considered small enough) for all x ∈ M0i. Moreover suppose
that the mean curvature H of each M0i is non-positive (i.e. H ≤ 0 on M0i for every
i = 1, . . . , k). If a(x) ≥ a0 > 0 on an open subset M∗ ⊂M that contains M\∪k

i=1 M0i

and if g is a monotonic increasing function such that k|s| ≤ |g(s)| ≤ K|s| for all |s| ≥ 1,
then uniform decay rates of the energy holds.
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In this talk we consider systems of wave equations where one of the nonlinearities act as a dissipative

term (which can be degenerate) and the other acts as a strong source. Under some conditions on the

parameters in the system we obtain several results on the existence of local and global solutions,

uniqueness, and blow up of solutions.
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ON EXISTENCE, UNIFORM DECAY RATES AND BLOW UP FOR
SOLUTIONS OF THE 2-D WAVE EQUATION WITH EXPONENTIAL

SOURCE

MARCELO M. CAVALCANTI

Abstract. This work is concerned with the study of the nonlinear damped wave equa-
tion

utt −∆u + h(ut) = g(u) in Ω× ]0,∞[ ,

where Ω is a bounded domain of R2 having a smooth boundary ∂Ω = Γ.
Assuming that g is a function which admits exponential growth at the infinity and, in

addition, that h is a monotonic continuous increasing function with polynomial growth
at the infinity, we prove both: global existence as well as blow up of solutions in finite
time, by taking the initial data inside the potential well. Moreover, optimal and uniform
decay rates of the energy are proved for global solutions.

Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil.
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1. Introduction

We are concerned with an optimal control prob-

lem for abstract evolution equations, including a

class of semilinear partial differential equations.

More precisely our control problem has the state

equation




dx(t)

dt
= Ax(t) + b(t, x(t), u(t)),

x(0) = x,

where A is a linear, densely defined maximal dis-

sipative operator in a real separable Hilbert space

H , and we want to minimize a cost functional of

the form

J(y;u(·)) =

∫ T

0

L(t, x(t), u(t)) dt + h(x(T ))

over all controls u(·) : [0, T ] → U , where U is

a metric space. We will discuss two aspects of

the dynamic programming approach to the above

optimal control problem. One is a viscosity so-

lution based verification theorem which provides

sufficient conditions for optimality. The other is

sub- and superoptimality principles of dynamic

programming whose proofs give an explicit con-

struction of ε-optimal controls.

2. Verification theorem

The verification theorem we present is an infinite

dimensional version of such a result for finite di-

mensional problems obtained in [5]. It gives a

sufficient conditions for optimality stated in an

integral form. The theorem is based on the no-

tion of viscosity solution, the Hamilton-Jacobi-

Bellman equation associated with the problem,

and an appropriate notion of superdifferential

which is linked to the test functions used in the

definition of viscosity solution. Other related re-

sults in this direction have been obtained before

in [1,2].

3. Construction of ε-optimal con-

trols

The construction of ε-optimal controls is a fairly

explicit procedure which relies on the proof of

superoptimality inequality of dynamic program-

ming for viscosity supersolutions of the corre-

sponding Hamilton-Jacobi-Bellman equation. It

is a delicate generalization of such a method for

the finite dimensional case from [4]. Similar

method has been used in [3] to construct stabiliz-

ing feedbacks for nonlinear systems. The main

idea of the method is to approximate the value

function by its appropriate inf-convolution which

is more regular and satisfies a slightly perturbed

HJB inequality pointwise. One can then use

this inequality to construct ε-optimal piecewise

constant controls. This procedure in fact gives

the superoptimality inequality of dynamic pro-

gramming and the suboptimality inequality can

be proved similarly.
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A Coupled Parabolic-Hyperbolic PDE system
Arising in Fluid-Structure Interaction
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Abstract

This presentation will deal with several problems: (i) semigroup well-
posedness in the natural energy space with explicit generator; (ii) spectral
properties of the generator; (iii) strong stability; (iv) uniform stabilization
under dissipation at the interface. This is joint work with George Avalos.
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We discuss the null boundary controllability of
the heat and Schrödinger equations with a poten-
tial. The unified approach applies not just to both
of these PDEs, but also to a one-parameter family
of PDEs that they belong to.

We consider:

eiζ ∂u

∂t
(x, t) =

1
2
∆u(x, t)− V (x)u(x, t) (1)

u(x, 0) = u0(x), x ∈ Ω, (2)

u(x, t) = g(x, t), x ∈ ∂Ω, (3)

where ζ ∈ [−π/2, 0] is a constant, Ω ⊂ RN is
a bounded domain, and g is a boundary control
function. We are interested in the null boundary
controllability of the heat and Schrödinger equa-
tions, which are obtained with ζ = 0,−π/2 re-
spectively, but our analysis applies for all ζ ∈
[−π/2, 0].

Of course the heat and Schrödinger equations
are important in their own right, but to some ex-
tent (1) is a model system in the sense that the
method we use should apply to an equation ob-
tained by replacing the right-hand-side of (1) by
an elliptic operator with variable coefficients. The
main assumption that we require on the coeffi-
cients is that they be analytic in RN , and that is
what we assume about the potential V (x). As this
is the first time that we have applied this particu-
lar method to a problem in more than one space
dimension, it seemed to us that the PDE (1) is a
good place to start; it illustrates the method with-
out the burden of some tedious estimates that the
general case would require and yet the problem
is rich enough to show how the method may be
applied in the general case.

As an example of the kind of controllability
result that may be obtained by the use of this

method, we state the following theorem, which
we prove.
Theorem Suppose that the potential V satisfies
an analyticity assumption. Let T > 0. Then,
given u0 ∈ L2 (Ω), we can find a boundary con-
trol function g such that u (x, T ) = 0. Further-
more, for all ε > 0,

g ∈
{

C ([0, T ]) ; H1/2−ε (∂Ω) , ζ = −π
2 ,

C ([0, T ]) ; H3/2−ε (∂Ω) , ζ ∈
(
−π

2 , 0
]
.

The proof of the Theorem involves taking a
trace on the boundary of Ω and for this some reg-
ularity must be assumed for Ω. It is sufficient that
∂Ω be C2 (C1 for the ζ = −π

2 Schrödinger case).
It is also sufficient that Ω be the C2 (C1 for the
ζ = −π

2 Schrödinger case) diffeomorphic image
of a polyhedron P ; the diffeomorphism being de-
fined in an open set containing P . In the latter
case, the above description of g holds for the de-
formed faces of the polyhedron. In contrast to the
mainstream approach for the Schrödinger equa-
tion based on duality, in the present paper we use
a method based on a smoothing property to calcu-
late the control functions directly.
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1. STATEMENT OF THE PROBLEM  

 
There is an extensive literature on structural 
acoustic models. Pioneering contributions are 
due to Avalos, Lasiecka and Lebiedzik (see e.g. 
[1],[4][5],[6]).  These models in which the 
interaction between an acoustic medium, e.g. a 
gas and an elastic medium, which may be a 
plate which coincides with one flat wall (the 
interface) of the surface of the chamber 
containing the gas, is analyzed, are challenging 
from a mathematical point of view due to their 
interactive nature which manifests in the 
coupling of the variables which come into play 
in the problem.  The focus in the mathematical 
investigations of these models is on the question 
of stabilizability as well as exact controllability. 
 
Until recently the deflections of the structural 
component of the structural acoustic model were 
described by the Euler-Bernoulli equations or 
the Kirchoff equation to provide for rotational 
inertia effects in addition to deformation effects, 
or the Von Karman  equations to provide for 
larger deflections while thermal effects have 
also been incorporated. The inclusion of these 
effects is important not only from a physical 
point of view, but  due to the parabolic nature of 
the uncoupled heat equation, such effects also 
 play a vital role in the stabilization of the 
energy associated with the models. 
 
Recently a new model was formulated by M. 
Grobbelaar [2,3] in which the equations for the 
plate are modified to take account of shear 
effects over and above displacement and 

rotational inertia effects in the interface.  Thus 
in the three-dimensional case, i.e. when the 
acoustic chamber is three-dimensional and the 
plate two-dimensional, the deflections of the 
plate are modelled by the Reissner-Mindlin plate 
equations.  This not only yields a model which 
is more accurate over the whole frequency 
range, but appropriate when high frequencies of 
the structural vibrations occur, i.e., when the 
wave phase length becomes comparable to the 
thickness parameter, in which case the Euler-
Bernoulli equation ceases to be valid. The three-
dimensional model is analyzed from the point of 
view of existence and uniqueness while for the 
two-dimensional model in which the structural 
component is a one-dimensional Timoshenko 
beam, existence and uniqueness as well as 
uniform stabilization is obtained by 
incorporating linear feedback boundary controls 
at the rigid and the flexible walls of the acoustic 
chamber and at the free end of the beam and 
using carefully chosen multipliers.  Both in the 
linear and nonlinear cases restrictions on the 
physical parameters in the problem emanate 
which turn out to be feasible from a physical 
point of view. 
 
Further reflection on the problem gives rise to 
the following question: Can one, over and above 
the recently introduced shear variables in the 
model, introduce another degree of freedom by 
allowing for temperature variations in the plate, 
i.e. introducing thermal effects in the Reissner-
Mindlin equations for the structural component 
of the model? Would this also result in a 
reduction of mechanical damping devices as in 
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the case of the classical Kirchoff equation or the 
Von Karman equations when one wishes to 
establish uniform stability of the energy 
associated with the model? 
 
In this talk we propose a model for a three-
dimensional structural acoustic model in which 
the plate is subject to transversal displace-
ment, shear effects and temperature 
variations and establish conditions for the 
uniform stabilizability of the structure.  
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In view of the control of the thermoelastic
thin shells, we consider the problem of modeling
a dynamic thin shell with thermal effects, using
the coordinate-free intrinsic model introduced by
Michel Delfour and Jean-Paul Zolésio (5; 4). The
aim of this method is to produce a coordinate free
version of the shell equations, in contrast to the
classical equations which require explicit repre-
sentation of the nonconstant coefficients. With
the intrinsic approach, one can exploit the under-
lying geometry of the shell to derive equations in
which the nonconstant coefficients are written in
the form of tangential operators. This enables us
to better modify and apply known techniques that
were developed for use in the constant-coefficient
case (flat plate models).

In previous work (2; 3; 1) we have devel-
oped a linear dynamic model of the thin shell
and shown several stability/controllability results.
However, as thermal effects are very important in
many applications of engineering, we wish to in-
clude them in our shell model. We proceed in
the development of a (linear) thermoelastic shell
model based essentially on similar assumptions
to those which are used in the derivation of clas-
sical linear thermoelastic plate models (see, e.g.
(6)).

As such, we subject the elastically and ther-
mally isotropic shell to an unknown tempera-
ture distribution. Eventually this yields a fully-
coupled system of four linear equations whose
variables are the displacement of the shell mid-
surface and the thermal stress resultants.

This work continues the development of the
model introduced in (7). We will present an im-
proved modeling which improved the way the
curvature is taken into account. Wellposdeness
will be established.
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Italy (anverde@unina.it)

Keywords: Morrey regularity, asymptotically convex, obstacle problems

1. Introduction

I will present some Morrey regularity results for
minimizers of functionals with the general form

u 7→
∫
Ω

g(x, u(x),∇u(x)) dx, (1)

where Ω is an open, bounded subset of Rn and
u ∈ W 1,1(Ω; RN ), with n, N ≥ 1. The pri-
mary property that I assume g possesses is that
there is a p ∈ (1,∞) such that for each x ∈ Rn

and each u ∈ RN , the function F 7→ g(x, u, F)
behaves like F 7→ ‖F‖p whenever ‖F‖ is suffi-
ciently large. Integrands with this property are
called asymptotically convex.

To make things more precise, let us say that
a function g : Ω × RN × RN×n → R is C0-
asymptotically convex if for each ε > 0 and each
(x, u) ∈ Ω × RN , there exists a σε(x, u) < +∞
such that∣∣∣g(x, u, F)−

(
1 + ‖F‖2

) p
2

∣∣∣ < ε‖F‖p, (C0-A)

whenever ‖F‖ > σε(x, u). If g : R → R is given
by g(F ) :=

(
1 + |F |2

) p
2 − |F |χQ, where χQ is

the characteristic function for the set of rational
numbers, then we see that g is C0-asymptotically
convex with σε = ε

− 1
p−1 , yet g is nowhere con-

vex. Nevertheless, one can show that a C0-
asymptotically convex function does, in some
sense, behave like a convex function at infinity.
Our regularity results apply to a minimizer, pro-
vided one exists, for functionals of the general
form (1), provided that g is C0-asymptotically
convex and the function (x, u) 7→ σε(x, u) satis-
fies some growth and regularity conditions.

2. Statement of Result

The statements for the main results are given in
terms of a generalized notion of an almost min-
imizer and are fairly technical, so I present an
application which conveys an idea of the content
of the main results while reducing the technical-
ities. In the following, I use Lp,κ to denote a
Morrey space and L p,κ to denote a Companato
space.
Theorem 1 Let 0 ≤ κ < n, 0 ≤ s < r < +∞
and 1 < q < +∞ be given. Let α ∈ L1,κ(Ω) be
given. Suppose that there is a λ ≥ 0 such that
h : Ω × RN × RN×n → R satisfies

|h(x, u, F)| ≤ α(x) + λ‖u‖r + ‖F‖q,

for each (x, u, F) ∈ Ω×RN ×RN×n. Let δ > 0
and p > max

{
q, nr

n+r

}
be given. Define the

functional J : W 1,1(Ω; RN ) → R by

J [u] :=
∫
Ω

{
δ
(
1 + ‖∇u(x)‖2

) p
2

+ h(x, u(x),∇u(x))
}

dx.

We have the following: If u ∈ W 1,p
loc (Ω; RN )

is a local minimizer for J; i.e. J [u] ≤
J [u + ϕ], for each ϕ ∈ W 1,p(Ω; RN ) with
supp (ϕ) ⊂⊂ Ω; then ∇u ∈ Lp,κ

loc (Ω; RN×n)
and u ∈ L p,p+κ

loc (Ω; RN ).
This result actually holds up to the boundary pro-
vided that ∂Ω and the boundary conditions are
sufficiently smooth. It also holds for certain vari-
ational problems with sufficiently smooth obsta-
cles. It is also possible to allow the coefficient
δ to be a continuous function that is uniformly
positive in Ω.
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3. Conclusion

To conclude, I make a few comments about the
implications of the above result to the broader
endeavor of establishing a lower-order regularity
theory for variational problems. Until recently,
results for such a theory have been for the most
part unavailable (see (2) for a discussion). As
demonstrated by V. Šverák & X. Yan (3), even if
an integrand h ∈ C∞(RN×n) is strictly convex
and has a uniformly bounded Hessian, a mini-
mizer for the functional u 7→

∫
Ω h(∇u(x)) dx

can be unbounded at an interior point in Ω. Thus
without additional assumptions on h, one can
not expect everywhere regularity for a minimizer.
In (1), M. Foss & G. Mingione showed that if
h ∈ C0(Ω × RN × RN×n) is quasiconvex and
possesses some additional growth and continuity
properties with respect to its third argument, then
a minimizer for the functional

u 7→
∫
Ω

h(x, u,∇u(x)) dx (2)

is partially continuous; i.e. continuous on an
open subset of Ω with full measure. Since
L p,p+κ ⊂ C0,1−n−κ

p whenever p+κ > n, Theo-
rem 1 shows that for each δ > 0 minimizers for
the functional

u 7→
∫
Ω

{
δ
(
1 + ‖∇u(x)‖2

) p
2

+ h(x, u(x),∇u(x))
}

dx (3)

must be everywhere continuous, provided that
p > max

{
q, nr

n+r , n−κ
}

. This result only re-
quires h to satisfy some very mild growth con-
ditions. Thus δ

(
1 + ‖∇u(x)‖2

) p
2 serves as a

rather robust regularizing term. It would be in-
teresting to discover if it is possible to obtain
information about the lower-order regularity of a
minimizer for the functional in (2) by approxi-
mating it using minimizers for functionals of the
form (3) and the regularity provided by Theo-
rem 1.
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Recent developments in the area of long time 
behavior of nonlinear hyperbolic flows will be 
presented. These include issues such as exist-
ence of global attractors, their smoothness and 
dimensionality. One of the difficulties arising in 
the analysis of attractors for hyperbolic flows is 
the lack of smoothing mechanism generated by 
the free dynamics (unlike parabolic flows). In 
addition, instability in the hyperbolic dynamics 
is intrinsincly an infinite-dimensional pheno-
menon. This, in particular, implies that the 
dissipation needed to ensure an existence of 
bounded absorbing sets can not be compact. 
Consequently, hyperbolic models with nonlinear 
dissipation require rather subtle analysis that is 
necessary in order to determine long time 
behavior of the underlying dynamics. One of the 
canonical example is classical wave equation 
with nonlinear dissipation and source of critical 
exponent. Non-compactness of the source, along 
with nonlinearity of the dissipation, renders the 
known techniques no longer applicable. 

The goal of this talk is to present an intrinsic 
theory of long time behavior corresponding to 
hyperbolic-like flows with critical sources and 
nonlinear (critical) dissipation. This will be 
largely based on recent results presented in [1] 
below. 

We shall first formulate several theorems stating 
abstract PDE inequalities that need to be 
established for proving results on attractors. 
These conditions will be shown much weaker 
than conditions resulting from up-to-date 
theories on dissipative systems. We shall show 
next how the above referred conditions relate to 
“inverse-observability” type of inequalities that 

have been recently studied in the context of 
control theory. However, the needed inverse 
inequalities must be established not for a single 
trajectory (as in the case of controllability or 
stabilization), but for a family of trajectories 
trajectories. This leads to additional and 
substantial technicalities which are dealt with by 
resorting to Carleman’s estimates.  

The general theory will be applied to semilinear 
wave equation with a nonlinear boundary 
damping and source of critical exponent. The 
ultimate results (see [2]) provide existence of 
finite-dimensional attractors which are, in 
addition, ”smooth”. Thus, the results obtained 
demonstrate finite dimensional and ultimately 
smooth long time behavior of a hyperbolic flow 
with geometrically constrained damping and 
critical nonlinearity. 
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1. THE CAUCHY PROBLEM

The authors establish decay rates for the energy
associated with the Cauchy problem{

utt − div(b(x)∇u) + a(x)ut = 0,

u(0, x) = u0(x), ut(0, x) = u1(x),
(1)

where x ∈ Rn, t > 0 and a and b are positive
C1 functions. For simplicity we work with com-
pactly supported initial data u0 ∈ H1(Rn), u1 ∈
L2(Rn)

u0(x) and u1(x) = 0 for |x| > R.

It is well known that (1) admits a unique weak
solution u with the regularity

u ∈ C((0,∞),H1(Rn)),

ut ∈ C((0,∞), L2(Rn)).

The main quantities of interest are the L2

norm and energy associated with u :∫
u2dx and

∫
(u2

t + b(x)|∇u|2) dx,

respectively. Hence the energy is a non-
increasing function of t. It is a natural question
whether the energy decays to zero as t goes to
infinity and if so, how fast it decays.

Although there is a vast literature on the study
of decay rates for damped wave equations, very
little work has been done in the case when the
Laplacian is replaced by an elliptic operator with
variable coefficients. In (1) Ikehata analyzes the
wave equation with variable coefficients in the

exterior of a star-shaped domain in the more re-
strictive setting where a ≡ 0 and b behaves like
a constant at infinity.

Our results employ a multiplier method first
developed by Todorova and Yordanov in (2).

2. THE MULTIPLIER METHOD

Fourier analysis is a powerful tool when the po-
tential a = a(t) is a function of time and has
been used by many authors (see [W1], [W2],
[R]). When a = a(x) Fourier techniques be-
come cumbersome as they involve localizations
in both frequency space and extended phase
space (0,∞) × Rn. A simple alternative is the
multiplier method. In general multiplier tech-
niques yield weaker decay estimates than Fourier
techniques whenever the latter can be applied to
(1). We can strengthen the multiplier method
for (1) by factoring out an asymptotic profile φ

for u and working with φ−1u. This quotient will
admit more precise estimates since it will vary
relatively slowly. Unexpectedly φ is allowed to
be an approximate solution of

a(x)φt − div(b(x)∇φ) = 0, x ∈ Rn, t > 0.

The decay rate of u will be expressed in terms
of φ and, implicitly, in terms of a and b.

The construction of the multipliers uses sub-
solutions of the equation

div(b(x)∇A(x)) = a(x), x ∈ Rn. (2)

Assuming that a behaves like |x|−α and b be-
haves like |x|β as |x| → ∞, we require that A
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should also satisfy with the following properties:

(a1) A(x) ≥ 0 for all x,

(a2) A(x) = O(|x|2−α−β) for large |x|,

(a3) m(a) = lim inf
x→∞

a(x)A(x)
b(x)|∇A(x)|2

> 0.

We show that such subsolutions A(x) can be ex-
plicitly constructed in many cases, including for
radial coefficients a(x) and b(x).

3. THE MAIN RESULT

Theorem 1 Assume that 0 ≤ α < n, 0 ≤ β < 2
and (a1)–(a3) hold. Then for every δ > 0 the
solution of (1) satisfies∫

e(m(a)−δ)
A(x)

t a(x)u2 dx

≤ Cδ(‖
√

b(x)∇u0‖2L2 + ‖u1‖2L2)tδ−m(a),∫
e(m(a)−δ)

A(x)
t (u2

t + b(x)|∇u|2) dx

≤ Cδ(‖
√

b(x)∇u0‖2L2 + ‖u1‖2L2)tδ−m(a)−1

for all t ≥ 1. The constant Cδ depends also on
R, a, and n.

Hence m(a) determines the decay rate and
A(x) determines the actual support of solu-
tions. (Solutions decay exponentially in the re-
gion A(x) > t.) Moreover, m(a) is invariant un-
der scaling a 7→ Ca. Definition (a3) shows that
m(a) is determined by the behavior of a(x) as
|x| → ∞.

4. CONCLUSIONS

The multiplier method remains a powerful tool
in establishing estimates for equations with vari-
able coefficients. This has been successfully
used even for nonlinear wave equations (see (3))
since the multipliers are determined by expected
asymptotic profile of solutions rather than the in-
variance of the wave operator. We believe that
this method could be successfully applied even
for wave equations with time dependent coeffi-
cients a and b.
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Results of exact controllability will be reported for a semilinear thermoelastic system, with control

placed in either the mechanical or thermal equation. The controlled partial differential equation (PDE)

model will be considered in two cases: (i) rotational forces are present in the PDE, in which case,

the underlying dynamics evince hyperbolic behavior; (ii) the rotational inertia parameter is absent, in

which case the PDE is of parabolic-like (analytic) character.
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1. Introduction

The shape sensitivity analysis for hyperbolic
problems yields some specific complications due
to the hyperbolic regularity, or the lack thereof.

In previous works we investigated the wave
equation and came up with some shape sensi-
tivity results. In this paper we investigate sen-
sitivity of the solutions to the Maxwell equation
with respect to the shape of the domain. We ex-
plicit a derivative with respect to a deformation
parameter. The transport of the free divergence
property requires a specific shape different quo-
tient that is not necessary in the scalar case. The
hyperbolic situation needs a sharp analysis due to
the specific complications related to the solutions
regularity at the boundary.

In (1) and (2) we announced some results con-
cerning the case with right hand side in L2 and
Dirichlet boundary condition when the data is
the restriction of a function defined on the entire
space. This important case of the wave equa-
tion with the right hand side in L2 and Dirich-
let boundary which is part of the control theory
framework, yields a solution that does not have
a material derivative, while the formal calculus
leads to a wave problem for the shape derivative
which “survives” (i.e. has a solution) due to the
so call hidden regularity described in (3)

We prove that the shape derivative exists in a
weak sense while the material one does not, and
this is a new situation which captures the bound-
ary hidden regularity as a profit for the shape
derivative which mainly depends on the solution
at the boundary. We present an exhaustive anal-
ysis of the scalar wave equation with general co-
efficients being time depending. In order to re-
cover sharp quantifications in the hidden regular-
ity properties we extend the extractor technique
introduced in (4).

2. Maxwell System

We consider a bounded domain D in R3 and
a family Ok of open connected domains Ω in
D whose boundary Γ = ∂Ω is a Ck manifold
oriented by the unitary normal field n outgoing
to Ω. Throughout this paper we assume k ≥ 2.

We suppose that Ω is occupied by an elec-
tromagnetic medium of constant electric permit-
tivity ε and constant magnetic permeability µ.
We suppose the electrical charge density and the
current density in Ω are zero.

Let T be a non negative real and I = [0, T ]
be the time interval. We note

Q =]0;T [×Ω

the cylindrical evolution domain and

Σ =]0, T [×Γ

the lateral boundary associated to any element
Ω of the family Ok.

Let E(t, x) and H(t, x) denote the electric
field and magnetic fields, respectively, at a point
x ∈ Ω and a time t ≥ 0. They satisfy the
Maxwell’s equations

ε∂tE − curlH = 0 on Q (1)

µ∂tH + curlE = 0 on Q (2)

div(E) = div(H) = 0 on Q (3)

H × n = 0 on Σ (4)

E(0) = E0 on Ω (5)

H(0) = H0 on Ω (6)

3. Shape Differentiation

Let S be a non-negative real number and Ek be
the set of V ∈ C([0, S]; Ck(D,R3)) with V ·
n∂D = 0. For any V ∈ Ek we consider the flow
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mapping Ts(V ). At the point x, V has the form
as follows:

V (s)(x) =
(

∂

∂s
Ts

)
◦ T−1

s (x)

Such transformations were studied in (5) and (6)
where a full analysis of the situation was given.

The family Ok is stable under the perturba-
tions We denote by Qs =]0;T [×Ωs(V ) the per-
turbed cylinder, Γs = ∂Ωs and Σs =]0, T [×Γs

the perturbed lateral boundary. We consider a
map defined on the family Ok

Ok →
⋃

Ω∈Ok

(L2(Q)× L2(Q))

To each element Ω ∈ Ok we associate the solu-
tion (E, H) = (E(Ω),H(Ω)) of the Maxwell’s
equations described above. For any V ∈ Ek

and s ∈ [0;S] we set Es = E(Ωs) ∈ L2(Qs)
and Hs = H(Ωs) ∈ L2(Qs). The mapping
Ω 7→ E(Ω) is said to be shape differentiable
in L2(I,Hm(D))

∃Ē ∈ C1([0;S], L2(I,Hm(D)))

Ē(s, ·, ·)∣∣
Qs

= E(Ωs)

then ∂sĒ(0, ·, ·)∣∣
Q

which is the restriction to Q

of the derivative with respect to the perturbation
parameter s at s = 0 is independent of the choice
of Ē. The shape derivative is this unique element

E′(Ω;V ) =
(

∂

∂s
Ē

)∣∣∣∣
s=0 (t,x)∈Q

∈ L2(I,L2(Ω))

The element Ė(Ω;V ) is the material der-
ivative of E in L2(I,Hm(D)) if it is the limit in
L2(I,Hm(D)) of

1
s

(E(Ωs) ◦ Ts − E(Ω))

when s tends to 0

4. Main Results

We assume E0 ∈ J∗n(Ω) and H0 ∈ J∗t (Ω). The
solution to the Maxwell’s equations is weakly
shape differentiable in H(curl,Ω), furthermore
the shape derivative is solution to

ε∂tE
′ − curlH ′ = 0 on Q (7)

µ∂tH
′ + curlE′ = 0 on Q (8)

div(E′) = 0 on Q (9)

div(H ′) = 0 on Q (10)

H ′ × n = [V (0),H]× n on Σ (11)

E′(0) = 0 on Ω (12)

H ′(0) = 0 on Ω (13)

where [·, ·] stands for the Lie brackets. Let

W (s) =
1
2
Ksn ·n‖ ∗DT−1

s n‖−1DT−1
s V (s) ◦Ts

then
h̄(s) =

∫

Q
f ′s ◦ TsΛs dx dt

+
∫

Σ

([
∂(ys + Λs)

∂n

]2

−
[
∂ys

∂n

]2

−
[
∂Λs

∂n

]2
)

W (s) · ndΓ dt

Each of these positive three terms are treated
via the extractor technique in the Maxwell sys-
tem.
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pliquées, 65(2):149–192, 1986.

[4] Michel C. Delfour and Jean-Paul Zolésio. Hidden
boundary smoothness for some classes of differ-
ential equations on submanifolds. In Steven Cox
and Irena Lasiecka, editors, Optimization Meth-
ods in Partial Differential Equations, volume
209, pages 59–73. Joint Summer Research Con-
ference, American Mathematical Society, 1997.
Mount Holyoke College, Massachusetts, USA.

[5] Michel C. Delfour and Jean-Paul Zolésio. Struc-
ture of shape derivatives for non smooth do-
mains. Journal of Functional Analysis, 104(1):1–
33, February 1992.

[6] Michel C. Delfour and Jean-Paul Zolésio. Shape
analysis via oriented distance functions. Jour-
nal of Functional Analysis, 123(1):129–201, July
1994.

143



Tubes and Saddle Point Analysis

Jean-Paul Zolésio

CNRS and INRIA , France

Keywords: Uniqueness, transport equation, saddle point, density

1. Eulerian Tubes Analysis

For any smooth vector field V ∈
L1(0, τ, W 1,∞(D, RN )), verifying a ”D-

bilateral viability” condition, say < V, n >= 0

on ∂D, the flow mapping Tt(V ) maps smoothly

the set D onto itself. Let be given two real

numbers (p, q), 1 < p ≤ ∞, 1 ≤ q < ∞, and

the linear space for speed vector fields:

Ep,q = { V ∈ Lp(0, τ, Lq(D, RN )),

s.t. : divV ∈ Lp(0, τ, Lq(D)),

V.n = 0 in W−1,1(∂D) }
φ(0) = φ0,

∂

∂t
φ + ∇φ.V = f (1)

ψ(0) = ψ0,
∂

∂t
ψ + div(ψ V ) = g (2)

Proposition 1.1 (Galerkine method, (5) (8)). As-
sume

V ∈ E2,2, (divV )+ ∈ L1(0, τ, L∞(D))

then (1) has solutions

φ ∈ L∞(0, τ, L2(D)) ∩ H1(0, τ, H−1(D))

If (divV )− ∈ L1(0, τ, L∞(D)) then (2) has so-
lutions

ψ ∈ L∞(0, τ, L2(D)) ∩ H1(0, τ, H−1(D))

The first idea would be to consider divV ∈
L1(0, τ, L∞(D)). Then both problems have

solutions. They are, formerly, adjoints pro-

blems one an other then we could be tempted to

conclude for uniqueness to both problems. That

argument does not apply as one of the two solu-

tions φ or ψ should be smooth in order to be ”put

in duality”. Then under previous poor regularity

on V we will not get existence nor uniquiness for

shape convection problem 3:

ζ(0) = ζΩ0
,

∂

∂t
ζ + ∇ζ.V = 0, ζ = ζ2 (3)

1.1. Saddle point

we consider a vector fields V in E2,2 and any

function G ∈ L∞(D) . We consider the Lagran-

gian ”Tube Energy” functional in the form

LV (ζ, φ) =

∫ τ

0

∫

D
{ 1/2 ζ2 G

+ ζ (
∂

∂t
φ + div(φ V ) )}dxdt −

∫

Ω0

φ(0)dx ,

HV = { φ ∈ L2(0, τ, L2(D))

s.t.
∂

∂t
φ + div(φ V ) ∈ L2(I×D) , φ(τ) = 0} ,

UV = L2(I × D). The Lagrangian LV is

concave-convex on UV × HV . Saddle points

(ξ, λ) are solution to the system composed of

equation 1 (with Φ0 = χΩ0
, f = 0 ) and the

following backward ”adjoint equation”

∂

∂t
λ + div(λV ) = − ξV G , λ(τ) = 0 (4)

The converse is true when we have an extra den-

sity condition on V and divV .

Assumption on V:

{φ ∈ C∞(I ×D)∩E2,2 } is dense in HV (5)

That weakly coupled system 1, 4 posesses so-

lutions when (divV )+ ∈ L1(I, L∞(D)). We

derive the following uniquiness results for the

convection problem 1:

Proposition 1.2 Assume V ∈ E2,2, verifying (5)
and (divV )+ ∈ L1(I, L∞(D)). Then, with f =

0 and Φ0 = χΩ0
(convection problem), or more

generally Φ0 ∈ L∞(D), the problem 1 posesses
a unique solution ζV verifying

0 ≤ ζV ≤ 1 a.e.(t, x) ∈ I × D

or (in the more general setting)

Infess Φ0 ≤ ζV ≤ Supess Φ0
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We have the monotony : Ω1
0 ⊂ Ω2

0 (or, in the
more general setting Φ1

0 ≤ Φ2
0 ) implies ζ1

V ≤
ζ2
V .

Proof : from the strong assumption 5 the set of

saddlepoints is not empty and is completely cha-

racterized by the system 1-4. let us denote by

SV the set of saddle points. We know that it can

be written as SV = AV ×BV , which means that

if (ζi, λi), i = 1, 2 are saddle points then ζ1, λ2

and ζ2, λ1 are also saddle points. We derive that

equation 4 with right hand side G ζi has solutions

and we derive uniquiness of ζV (from the fact that

G > 0), single element in AV (in other words

AV is reduced to a single element ζV ). From

uniquiness we know that 0 ≤ ζ ≤ 1. From (6)

the density assumption is true when V verifies

some BV regularity (V ∈ L2(I, BV (D, RN )...

see (11)). Using the rank one theorem of Alberti

for the jacobian DV of BV vector field V Am-

brosio builts a mollifier sequence ρn such that te

”commutator term”

cn := (ρn∗∇φ).V −ρn∗(∇φ.V ) → 0 → 0in L2

an then the density (5) is classiquely derived.

(Indeed P.L. Lions and Di Perna (7) obtained this

results 14 years before with more regularity on

the field V ∈ L2(0, τ, W 1,1(D, RN )), ....). It

is interesting that this result was associated with

W 1,1 vector field smoothness and recentely (6)

droped to BV smoothness. It seems that this BV

smoothness is yet not the ”bottom” assumption as

it can very easily seen that in the previous saddle

point existence the previous density assumption

can be weakned by the following one:

It is just enough (to derive the previous uni-

quiness proof ) that V has the following property:

∀ζ ∈ L2(I × D), ∀φ ∈ HV ,

∃ a mollifier sequence

ρn(t, x) ∈ C∞([0, τ ] × D̄) with :

an :=

∫

0

∫

D
ζ[(ρn∗∇φ).V −ρn∗(∇φ.V )]dxdt → 0

Indeed the ”delicate” point in the proof is to get

from the equations to the saddle point. Then

when writting the derivative of the Lagrangian

functional L in the direction ρn ∗ φ, φ ∈ HV

we can pass to the limit with the additional term

an which goes to zero and the element ζ ap-

pears as being the partial minimum of L. The

uniqueness for the solution ζ to (1) is necessary

for the analysis of the derivative of the mapping

V → ζ which is used in several applications in

(2), (9),...(11). and also concerning more gene-

ral convection equation for level set solution and

oriented distance function evolution.
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Many surfaces ω in R3 can be viewed as a

subset of the boundary Γ of an open subset Ω

of R3 and the associated oriented distance func-

tion bΩ to the underlying set Ω completely de-

scribes the surface ω: its (outward) normal is

the gradient ∇bΩ and its first, second, and third

fundamental forms are ∇bΩ ⊗ ∇bΩ, its Hessian

D2bΩ, and (D2bΩ)2 restricted to the boundary Γ

(10; 15). In addition, a fairly complete intrin-

sic theory of Sobolev spaces on C1,1-surfaces is

available in (7).

In the theory of shells, the asymptotic model,

only depends on the choice of the constitutive

law, the midsurface, and the appropriate sub-

space of the space of solution that properly han-

dles the loading applied to the shell. So, a central

question is how rough this midsurface can be to

make sense of asymptotic membrane shell and

bending equations without ad hoc mechanical or

mathematical assumptions. It turns out that this

is possible for a general C1,1-midsurface with or

without boundary such as a sphere, a donut, or a

closed reservoir. Moreover, it can be done with-

out local maps, local bases, and Christoffel sym-

bols via the purely intrinsic methods developed

starting in 1992 with (11) and in a number of

subsequent papers (12; 13; 14; 4; 5; 6; 8; 9; 3).

In recent work on the representation of a sur-

face, (2) have introduced a class of bi-lipschitzian

representations subject to a strong Lipschitz con-

dition on the normal field. This work was also

used by (16) to study the G1-junction of such

patches, called K-regular patches. It was already

known that C1,1-surfaces have a Lipschitzian

normal field, but it was not, a priori, clear that

the midsurfaces generated in this parametrized

set-up would be strictly rougher than C1,1.

In this paper, we show that the bilipschitzian

surfaces with a Lipschizian normal field intro-

duced in (2) are C1,1-surfaces with a bounded

measurable second fundamental form on ω. So

C1,1 is still the currently available minimum

smoothness to make sense of asymptotic mem-

brane shell and bending equations. The results

are given for an hypersurface in RN , N ≥ 2,

since the proofs are independent of the dimen-

sion. As a consequence, the G1-junctions of K-

regular patches along a join δ12 developed in (16)

are in fact C1,1-junctions at points of the joint δ12

where the surface has a local G1 join. Finally,

for the family of surfaces ω in (2), we adapt an

example from (1) to show that the tubular neigh-

borhood or sandwich of thichness 2h around the

surface ω is not a Lipschitzian domain in R3 be-

cause, for all h > 0, its lateral boundary is not

Lipschitzian. This means that classical results

from three-dimensional linear elasticity over Lip-

schitzian domains cannot be readily applied to

the class of thin shells studied in (2).

To complete and update the references in (2)

on the theory of shells and to provide a broader

perspective to the reader, we briefly recall a few

results starting with the key paper (4) on intrinsic

methods in the asymptotic analysis of three mod-

els of thin shells for an arbitrary linear 3D consti-

tutive law. They all converge to asymptotic shell

models that consist of a coupled system of two

variational equations. They only differ in their

resulting effective constitutive laws. The first

equation yields the generally accepted classical

membrane shell equation and the Love-Kirchhoff

terms. The second is a generalized bending equa-

tion. It explains why convergence results for the

3D models were only established for plates and

in the bending dominated case for shells. The
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most pertinent of the three is the P (2, 1)-model,

since it converges to the right asymptotic model

with the right effective constitutive law. We also

show in (5) that models of the Naghdi’s type

can be obtained directly from the P (2, 1)-model

by a simple elimination of variables without in-

troducing the a priori assumption on the stress

tensor σ33 = 0. Bridges are thrown with classi-

cal models using local coordinates. Those results

are completed in (5) with the characterization of

the space of solution for the P (2, 1) thin shell

model and the space of solutions of the asymp-

totic membrane shell equation in (6). This char-

acterization was only known in the case of the

plate and the uniformly elliptic shell.

In (8), a new choice of the projection achieves

the complete decoupling of the membrane and

bending equations without the classical plate or

bending dominated assumptions, after reduction

of the number of variables. In the second part of

(8) we present a dynamical thin shell model for

small vibrations and investigate the correspond-

ing dynamical asymptotic model. Those papers

complete (4) and make the connection with most

existing results in the literature thus confirming

the pertinence and the interest of the methods we

have developed. Extensions of the P (2, 1)-model

have also been developed for piezoelectric shells

(9; 3) where a complete decoupling of the mem-

brane and bending equations is also obtained.
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1. GALERKIN METHOD

We address the approximation of geometries by
finite dimensional process with no restriction on
the topologies. In view of possible topological
changes in the approximation process, we con-
sider a level set modeling (see (3) and (2) ). Let
Φ(t, .) be a continuous function defined over a
domain D with Φ : D × R∗

+ → R. In order to
build the domain Ωt through a finite dimensional
process, we consider a Galerkin extension by ex-
panding the function Φ in a vector space of fi-
nite dimension in the basis B = {e1, . . . , eM} as
follows Φ(t, x) =

∑M
k=1 αk(t)ek(x), where the

functions ek are given smooth functions defined
over D. Thus the coefficients αk of Φ will be the
solution to a differential equations system. The
approximation process is now to find the coeffi-
cients α ∈ RM in oder to minimize the distance
between a given domain Ωo ⊂ D and the mov-
ing domain Ωt. At that point this method should
be completed on the following two points: the
choice of the Galerkin basis ek and the topology
that we consider in the minimization process.

2. DIFFERENTIABLE SHAPE TOPOLO-
GIES

We consider the metric associated with the char-
acteristic function defined by : χΩ(x) = 1 if x ∈
Ω and 0 if x ∈ D\Ω. We know that for smooth
domains we have : χΩ ∈ Hs(RN ), s < 1/2.
The idea is to consider metric associated to that
regularity : 0 < s < 1/2

ds(Ω1,Ω2) = ||χΩ1 − χΩ2 ||L2(RN )+

||χΩ1 − χΩ2 ||Hs(RN )

So that

||χΩ ||Hs(RN ) = 2
∫

Ω

∫

D\Ω̄
G(x, y) dxdy

Where the kernel G(x, y) = ||x − y||−(N+2s) is
singular on the diagonal

∆ = {(x, x) ⊂ D ×D, x ∈ D }.
When the domain boundary ∂Ω is smooth we
consider the two inner and outer tubular neigh-
borhood of the boundary

Uh(∂Ω) = {x ∈ D, 0 < bΩ(x) < h },
U−h(∂Ω) = {x ∈ D, −h < bΩ(x) < 0 }

Then
||χΩ ||Hs(RN ) = ah + bh

bh =
∫

Uh(∂Ω)

∫

U−h(∂Ω)
g(x, y) dxdy

=
∫ h

0

∫

∂Ω

∫ 0

−h

∫

∂Ω
G(x+z∇bΩ(x), y+r∇bΩ(y))

jz(x)jr(y) dΓ(x)dzdΓ(y)dr

Where js(w) = 1 + sH(w) + s2 K(w) ( in the
specific case N = 3 with H(w) = ∆bΩ(w), w ∈
∂Ω, is the mean curvature of the manifold Γ =
∂Ω , while K(w) is the Gauss curvature).

2.1. Level set method

The specific parameterization for moving do-
mains is : Ωt = { x ∈ D s.t. Φ(t, x) > 0 },
with Φ ∈ C1([0, T ],H1

0 (D)). Then we consider
the following vector field

V = − ∂

∂t
Φ

∇xΦ
||∇xΦ||2 ,

We know that Ωt = Tt(V )(Ω0), that is to say
that the domain Ωt can be equivalentely consid-
ered as the image by the flow mapping Tt(V ) of
the initial domain Ω0 associated with the function
Φ(0, x). At the boundary the normal component
of the vector field turns into

v = 〈V (t, .), nt(.)〉 = − ∂

∂t
Φ/||∇xΦ||.
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2.2. Galerkin Expansion

We consider the evolution of a level set generated
by the expansion of the function Φ in a vector
space of finite dimension

Φ(t, x) =
M∑

k=1

αk(t) ek(x)

where ek is a family of given functions:
Wavelets, Polynomials or finite elements basis.
Thus according to this formulation, moving do-
mains parameterization turns into

Ωt := {x ∈ D s.t.
M∑

k=1

αk(t) ek(x) > 0 }

where the normal component of the flow vector
field is defined as follows

v := −
M∑

k=1

∂αk(t)
∂t

ek(x) ||
M∑

m=1

αm(t)∇xem(x)||−1

3. LEVEL SET h-SCALING FORMULA-
TION

We are dealing with shape gradient as referred to
in (3) and (2), which (from the structure theorem)
are boundary integrals in the following form :

∫

∂Ωt

F 〈V (t), nt〉 dΓt,

Using Federer measure decomposition theorem
and assuming the mapping :

z ∈ (−h, +h) → (
∫

Φ−1(z)

F

||∇xΦ|| dΓ )

to be continuous, we obtain for h → 0
∫

Γ

F (x)
||∇xΦ(x)|| dΓ(x) =

1
2h

∫

UΦ
h (Γ)

F (x) dx + o(1)

where UΦ
h (Γ) = {x ∈ D | |Φ(x)| < h }.

Consequently, the shape gradient is approximate
through the choise of the parameter h → 0 by :
∫

∂Ωt

〈V (t), nt〉 dΓt = − 1
2h

∫

UΦ
h (Γ)

| ∂
∂t

Φ(t, x)| dx

The point being that, in this approximation, the
denominator ||∇xΦ(t)|| has been eliminated.

4. NUMERICAL EXPERIMENT

Concerning 3D active contour, we consider the
graph of Φ(t, .) in R4 and the example bellow
of the domain Γ0 (4 cubes boundaries). We start
with a random initialization for parameter α so
that, the boundary Γt=0 is a ”terrific” shape in 3D
(figure 1). The figure 2 shows the optimal evo-
lution of boundary Γt with topological changes.
Finally, we discuss accuracy following the choice
of different basis and also possible hierarchical
algoritms.

Fig. 1. given domain Γ0 and initial domain Γt=0

Fig. 2. given domain Γ0 and optimal domain Γt

REFERENCES

[1] Delfour, Michel C. and Zolésio, Jean-Paul Ori-
ented distance function and its evolution equation
for initial sets with thin boundary. SIAM J. Con-
trol Optim. 42 (2004), no. 6, 2286–2304

[2] J. Sokolowski and J.P. Zolésio. Introduction to
shape optimization, sci, 16, Springer verlag, Hei-
delberg, N.Y., 1991

[3] M. Delfour and J.P. Zolésio Shape and Geometry
Advances in Design and Control,04, SIAM, 2001

149



Stability of discrete approximations for optimal control of one-sided
Lipschitzian Differential Inclusions

Tzanko Donchev1, Elza Farkhi2, and Boris S. Mordukhovich3∗

1Department of Mathematics, University of Architecture and Civil Engineering
1046 Sofia, Bulgaria; tzankodd@gmail.com

2School of Mathematical Sciences, Tel Aviv University
69978 Tel Aviv, Israel; elza@post.tau.ac.il

3Department of Mathematics, Wayne State University
Detroit, Michigan 48202, USA;

boris@math.wayne.edu

Keywords: differential inclusions, stability theory

∗ This talk is devoted to the study of differ-
ential inclusions given in the form

ẋ(t) ∈ F
(
t, x(t)

)
for a.e.

t ∈ T := [0, 1], x(0) = x0 ∈ H,

where H is a Hilbert space, and where
F : T ×H →→ H is a set-valued mapping with
nonempty compact values (some results hold
also with no compactness assumption). It is
well known that the differential inclusion de-
scription under consideration is important for
its own sake and covers many other conven-
tional and nonconventional models involving
dynamical systems in finite and infinite dimen-
sions. In particular, differential inclusions ex-
tend control systems

ẋ(t) = f(t, x, u), u ∈ U(t, x),

where the control region U(t, x) can depend
on the state variable x, which is a challenging
issue in control theory and applications.

The primary purpose of this talk is to
present new results on stability theory for dis-
crete approximations of differential inclusions

∗Research of this author was partially supported
by the USA National Science Foundation under grants
DMS-0304989 and DMS-0603846 and by the Australian
Research Council under grant DP-0451168.

and of certain dynamic optimization/optimal
control problems associated with them. These
topics have been addressed in many publica-
tions, mostly in finite-dimensional spaces. The
vast majority of publications in these direc-
tions impose the classical Lipschitz continuity
of the mapping F in x, which seems to be
restrictive for a number of applications.

In this study we systematically replace the
Lipschitz continuity by a certain modified one-
sided Lipschitzian (MOSL) property of F in x,
which is an essentially weaker assumption; see
more discussions below.

The scope and results of this talk are fully
different from the previous developments in
these directions. Our main efforts are to es-
tablish the strong approximation/stability (in
the W 1,p-norm as p ≥ 1) of feasible trajecto-
ries for MOSL differential inclusions by those
for their discrete approximations and also to
justify the strong W 1,p-convergence of opti-
mal solutions to the associated problems of dy-
namic optimization/optimal control under dis-
crete approximations. The results obtained ex-
tend, to the case of MOSL differential inclu-
sions in finite-dimensional and Hilbert spaces,
the corresponding developments of the third
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author (2) for differential inclusions satisfying
the classical Lipschitz condition.

Another achievement of this study, mo-
tivated by applications to the convergence
of discrete approximations in optimal con-
trol while certainly significant for its own
sake, is establishing a Bogolyubov-type re-
laxation/density theorem for differential inclu-
sions satisfying the MOSL condition. The lat-
ter result is known to hold for Lipschitzian dif-
ferential inclusions and to fail for OSL ones.
All the results presented in this talk seem to
be new in both finite-dimensional and infinite-
dimensional settings.

The major results of this talk concern dis-
crete approximations of dynamic optimization
Bolza-type problems for nonconvex MOSL
differential inclusions. We justify the strong
W 1,p-convergence of optimal solutions for the
discrete approximation problems to the given
optimal solution (actually an arbitrary local
minimizer of the “relaxed intermediate” and
strong types) for the continuous-time general-
ized Bolza problem under consideration. We
also establish general conditions (both neces-
sary and sufficient) for the value convergence
of discrete approximations of the generalized
Bolza problem for MOSL differential inclu-
sions. The results obtained significantly im-
prove known results in this direction by weak-
ening assumptions on the initial data depen-
dence with respect to both the state and time
variables. The proofs are essentially based
on strong approximation and relaxation stabil-
ity for MOSL differential inclusions discussed
above.

The main results of this talk correspond to
the forthcoming paper (1) of the authors.
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1. INTRODUCTION

We consider the one-dimensional elliptic optimal
control problem

(CP) min
1
2

T∫

0

|z(t)− zd(t)|2 + ν |u(t)|2 dt

s.t.

−z̈(t)+Az(t) = Bu(t)+e(t) for a.a. t ∈ [0, T ] ,

z(0) = z(T ) = 0 ,

a ≤ u(t) ≤ b for a.a. t ∈ [0, T ] ,

where u ∈ L2(0, T ;Rm), z, zd ∈ W 2
2 (0, T ;Rn),

ė ∈ BV (0, T ;Rn), A ∈ Rn×n is symmetric and
positive semidefinite, B ∈ Rn×m and a, b ∈ Rm,
a < b.

2. DISCRETIZATION OF THE
STATE EQUATION

For the discretization of the state equation

−z̈(t) + Az(t) = y(t) for a.a. t ∈ [0, T ] ,
z(0) = z(T ) = 0 ,

(1)

we use a uniform grid

G = {ti = ih | i = 0, . . . , N} (2)

with mesh size h = T/N , N ≥ 2. By Sh =
Sh(y) we denote the quadratic spline with knots
ti, i = 0, . . . , N , defined by the collocation and
boundary conditions

−S̈h(ti) + ASh(ti) = y(ti), i = 0, . . . , N ,

Sh(0) = Sh(T ) = 0 .

If z ist the solution of the state equation (1) and
ẏ ∈ BV (0, T ;Rn), then

‖z − Sh‖∞ ≤ c h2

with a constant c independent of h (see
Sendov (5), Theorem 7.3).

3. DISCRETIZATION OF THE
CONTROL PROBLEM

We define Uad = {u ∈ L2(0, T ;Rm) | a ≤
u(t) ≤ b for a.a. t ∈ [0, T ]}. For a function
f continuous on [0, T ] we define

‖f‖h =

√√√√h
N∑

i=0

|f(ti)|2 .

Let Vh(0, T ;Rm) be the space of continuous,
piecewise linear functions on the grid (2). Using
the operator Sh we discretize problem (CP) in
the following way:

(CP)h min
1
2
‖Sh(Buh + e)− zd‖2

h + ν ‖uh‖2
h

s.t. uh ∈ Uad
h = Uad ∩ Vh(0, T ;Rm).

Problem (CP)h has a unique solution ūh.

4. ERROR ESTIMATES

First we derive a result on discrete quadratic con-
vergence for the solutions ūh ∈ Vh(0, T ;Rm) of
the problems (CP)h.
Theorem 1. Let ū be the solution of (CP2) with
˙̄u ∈ BV (0, T ;Rm) and ūh ∈ Vh(0, T ;Rm) the
solution of the discrete problem (CP)h. Then

‖ū− ūh‖h ≤ c h2, (3)

holds true with a constant c independent of h.
The continuous error ‖ū − ūh‖∞ is only of

order 3/2. Therefore, we adopt the idea of
Meyer/Rösch (4) (see also (1), (2)) to construct
a new feasible control by

ũh = Π[a,b]

(
−1

ν
BTph(ūh)

)
, (4)

for which we can prove continuous convergence
of order 2.

152



Theorem 2. Let ū be the solution of prob-
lem (CP2) with ˙̄u ∈ BV (0, T ;Rm) and ūh ∈
Vh(0, T ;Rm) the solution of the discrete problem
(CP)h. Then for the control ũh defined by (4) we
have the continuous error estimate

‖ū− ũh‖∞ ≤ c h2

with a constant c independent of h.
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1. Introduction

In this talk we consider nonsmooth operator
equations of the form

u = Π[a,b](g(θ)−G(θ) u), (1)

where the unknown u ∈ L2(D) is defined on
some bounded domain D ⊂ RN , and Π[a,b] de-
notes the pointwise projection onto the set

Uad = {u ∈ L2(D) : a(x) ≤ u(x) ≤ b(x) a.e.}.

Such nonsmooth equations appear as a reformu-
lation of the variational inequality

Find u ∈ Uad s.t. for all v ∈ Uad,

〈u + G(θ) u− g(θ), v − u〉 ≥ 0. (2)

Applications of (2) abound, and we mention
control-constrained optimal control problems as
a particular one.

Throughout, G(θ) is a bounded and monotone
linear operator with smoothing properties, such
as the solution operator to a differential equation,
and g(θ) ∈ L∞(D). Both G and g may depend
nonlinearly and also in a nonsmooth way on a
perturbation parameter θ from some normed lin-
ear space Θ.

2. Update Strategies

Under appropriate assumptions, (1) has a unique
solution u[θ] for any given θ. We are concerned
with update strategies which allow to approxi-
mately recover the solution u[θ] from a reference
solution u[θ0] in its vicinity. In particular, we
consider the strategies

C1(θ) := u[θ0] + u′[θ0](θ − θ0)

C2(θ) := Π[a,b]

(
u[θ0] + u′[θ0](θ − θ0)

)
C3(θ) := Π[a,b]

(
φ[θ0] + φ′[θ0](θ − θ0)

)
.

The latter involves the solution φ[θ] of an adjoint
problem

φ = g(θ)−G(θ)Π[a,b]φ.

3. Main Result

We prove that under appropriate assumptions,
these strategies admit the error estimates

‖Ci(θ)− u[θ]‖p

‖θ − θ0‖Θ
→ 0 as ‖θ − θ0‖Θ → 0,

where ‖ · ‖p denotes the Lp(D) norm and p ∈
[2,∞] for i = 3 but only p ∈ [2,∞) for i =
1, 2. That is, the strategy C3 involving the adjoint
quantities allows a uniform error estimate on D,
while the other two do not. To prove this result,
we verify the Bouligand differentiability of the
maps u[θ] and φ[θ], which amounts to Fréchet
differentiability without the requirement that the
derivative depend linearly on the direction.

4. Numerical Results

As an application, we consider an optimal bound-
ary control problem for an elliptic partial dif-
ferential equation with pointwise control con-
straints. The solution u[θ0] and its directional
derivative u′[θ0] δθ are obtained using a semis-
mooth Newton (active set) iteration. The adjoint
quantities φ[θ0] and φ′[θ0] δθ are computed si-
multaneously at no additional cost.

A comparison verifies the superiority of the
update strategy C3.
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1. INTRODUCTION

We are interested in optimal control of elliptic
partial differential equations with mixed point-
wise inequality constraints:

minimize
∫
Ω

ϕ(y, u, x) dx+
∫
∂Ω

ψ(y, s) ds

subject to
−∆y + f(y) = u in Ω,

y = 0 on ∂Ω,

u ≥ 0 in Ω,

εu+ y ≥ yc in Ω.

(1)

In (1), y and u denote the state and con-
trol variables, respectively. Problems with
mixed control-state constraints are important
as Lavrientiev-type regularizations of pointwise
state-constrained problems [3, 4, 5], but they are
also interesting in their own right.

2. CONVERGENCE OF SQP
METHOD

Optimal problems involving semilinear PDEs
can be efficiently solved using the sequential
quadratic programming (SQP) method. The
theory of local convergence of SQP methods
is already developed for finite dimensional and
infinite-dimensional optimization problems with
nonlinear equality and inequality constraints [1].
Its convergence analysis is based on a relation be-
tween the SQP method and a generalized Newton
method, i.e., one considers first-order necessary
optimality conditions of (1) as a so-called gener-
alized equation

0 ∈ F (w) +N(w), (2)

where the mapping F (w) := F (y, u, p, µ1, µ2)
reflects the differentiable part of the system de-
scribed by the necessary optimality conditions
of (1) and the multivalued mapping N(w) corre-
sponds to that part of necessary optimality con-
ditions which are connected to the inequality
constraints of (1). It contains with N1(u) and
N2(y, u) so-called dual cones. Next, one ap-
plies to (2) the Newton method, which gives a
locally convergent sequence computed from the
linearized equation

0 ∈ F (wk) + F ′(wk)(w − wk) +N(w). (3)

This interplay between the Newton method and
the SQP method is a specific feature, which can-
not be derived from general results in Banach
spaces [1], since we have to discuss pointwise
relations. Until now, such convergence results
for optimal control problems governed by PDEs
are only known for control-constrained problems.

3. LIPSCHITZ STABILITY

The local convergence behavior of SQP method
relies essentially on the strong regularity [6] of
a generalized equation (2), which means Lips-
chitz continuous dependence of the solution of
the linearized generalized equation (3) on a per-
turbation parameter. In the context of PDE-
constrained optimization, the linearized gener-
alized equation represents necessary and suffi-
cient optimality conditions of an auxiliary linear-
quadratic optimization problem, the form of
which arises from (1). The proof of this core step
has recently been achieved in [2]. We consid-
ered a family of linear-quadratic optimal control
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problems with pointwise mixed state-control con-
staints governed by a linear elliptic partial differ-
ential equation in which all data depend on a vec-
tor parameter of perturbations δ. The presence of
simultaneous control and mixed constraints com-
plicates our analysis. The multipliers associated
to these constraints are present in every equa-
tion involving the adjoint state. Therefore, the
direct estimation of the norm of the adjoint state
is not possible in this situation. The new Lips-
chitz stability result [2] for linear quadratic op-
timal problem paves the way for the subsequent
convergence proof of the SQP method applied to
the nonlinear problem (1).

4. NUMERICAL EXAMPLE

The quadratical convergence of SQP method ap-
plied to the nonlinear problem of type (1) will
be illustrate by a numerical example.
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On two numerical methods for state-constrained
elliptic control problems. Submitted.
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In this talk we will discuss a posteriori
error estimation for elliptic optimal control
problems with inequality constraints on the
control and the state variable. The derived er-
ror estimates have the goal to guide an adap-
tive mesh refinement algorithm for finding
economical meshes for the optimization prob-
lem under consideration.

The use of adaptive techniques based on
a posteriori error estimation is well accepted
in the context of finite element discretization
of partial differential equations, see e.g. [3, 6,
13]. To our knowledge, there are only few
published results on adaptive finite elements
for optimization problems, see [1, 2, 4, 5, 12]
and [7, 8, 9, 10, 11].

In articles [7, 8, 9, 10, 11], the authors pro-
vide a posteriori error estimates for elliptic
optimal control problems with distributed or
Neumann control subject to box constraints
for the control variable. These estimates ac-
cess the error in the control, state and the
adjoint variable with respect to the natural
norms of the corresponding spaces. In [1] an-
other approach for the estimating of the er-
ror with respect to the norm of the control
space is presented. In [7] convergence of an
adaptive algorithm for a control constrained
optimal control problem is shown.

However, in many applications, the error in
global norms does not provide a useful error

bound for the error in the quantity of phys-
ical interest. In this talk, we discuss error
estimates with respect to a given functional.

In [2], the authors present a general con-
cept for a posteriori estimation of the dis-
cretization error with respect to the cost func-
tional in the context of optimal control prob-
lems. In papers [4, 5], the authors have ex-
tended this approach to the estimation of the
discretization error with respect to an arbi-
trary functional (quantity of interest) depend-
ing on both the control and the state vari-
able. However, in all these publications, opti-
mal control problems without any inequality
constraints are considered.

Recently, in [14] a posteriori error estima-
tors for elliptic problems with pointwise in-
equality constraints on the control variable
have been derived, which assess the discretiza-
tion error with respect to a given quantity of
interest. In this talk, we will discuss some ex-
tensions of these techniques for the case op-
timal control problems involving state con-
strains.

To this end we consider a model problem

min J(q, u) =
1
2
‖u− ud‖2

L2(Ω) +
α

2
‖q‖2

L2(Ω)

subject to q ∈ Q = L2(Ω), u ∈ Vad, with

Vad =
{
u ∈ H1

0 (Ω) : ua ≤ u ≤ ub

}
,
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and {
−∆u = f + q in Ω,

u = 0 on ∂Ω.

We discuss a finite element discretization of
this problem leading to the discrete solution
(qh, uh) and derive an error estimator for the
error with respect to the cost functional, i.e.

J(q, u)− J(qh, uh).

The behavior of the adaptive algorithm based
on our error estimator is demonstrated on nu-
merical examples.
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1. INTRODUCTION

We apply the semidiscrete approach developed

in (1) to control constrained semilinear elliptic

optimal control problems of the form

(P ) min
U∈Uad

Ĵ(u) =

∫
Ω

L(x, y(u))dx +
α

2
‖u‖U

where the state y = y(u) is coupled to the control

u through the semilinear elliptic PDE

Ay = f(x, y) + Bu in Ω

y = 0 on ∂Ω.

Here Ω ⊂ R
2 denotes a sufficiently smooth,

bounded domain, U the Hilbert space of con-

trols, Uad ⊂ U a closed and convex subset, A an

elliptic differential operator, B : U → L2(Ω) the

control operator and α > 0 a constant.

2. DISCRETE APPROACH

In the semidiscrete approach problem P is re-

placed by problem

(Ph) min
U∈Uad

Ĵh(u) =

∫
Ω

L(x, yh(u))dx +
α

2
‖u‖U

where of given u ∈ U the function yh(u) is a

continuous, piecewise polynomial finite-element

approximation to y(u). We emphasize that the

set of admissible controls is not dicretized in our

approach.

3. RESULTS

Although problem (Ph) remains infinite-

dimensional, it is possible to solve it numerical

by fixed-point iterations or semi-smooth Newton

methods applied to the first-order necessary

optimality conditions. The latter can be specified

in terms of a semi-smooth operator equation in

the control space U . Under suitable conditions

on L and f we prove existence of solutions

to (P ) and (Ph), respectively. We further

prove convergence of solutions uh of (Ph) to

a solution u of (P ) and provide optimal error

estimates for ‖u − uh‖U , provided that the limit

u satisfies a second order sufficient condition.

Optimal in this context means that

‖u−uh‖U ∼ ‖y(u)−yh(u)‖L2 +

+ ‖p(y(u))−ph(y(u))‖L2 ,

i.e. the error in the controls admits the same

quality as the errors of the state and the adjoint

state, respectively. Here p(y(u)) denotes the ad-

joint state, and yh(u) and ph(y(u)) denote finite-

element approximations to y(u) and p(y(u)) re-

spectively. In the case of H2-regular state equa-

tions we thus obtain

‖u − uh‖U = O(h2) (h → 0).

4. NUMERICAL EXAMPLE

In Fig. 1 we present numerical results for Ω =

[0, 1]2, L(x, y) = 1

2

∫
Ω
(y− z)2 and f(x, y) = y3

with A = −∆, B = Id, α = 1, U = L2(Ω),

Uad = {v ∈ U ; v ≤ 20}, and z = 104x1x2(1 −

x1)(1−x2). The numerical solution is computed

using a fixed point iteration which takes about

25 to 30 iterations to converge. As can be seen,

the discrete active set is resolved independently

of the finite element edges an delivers a very

well approximation of the active set of the con-

tinuous solution already on rather coarse meshes.

For a comparison also the active set obtained by

the conventional approach with piecewise linear,

continuous controls is presented.
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Fig. 1. control with semidiscretization

Optimal control (top) and active sets (bottom) of the
continuous solution (green), of the discrete solution
(blue) and of the conventional approach (red).

5. CONCLUSIONS

The semidiscrete approach of (1) ist extended to

semilinear elliptic control problems. The numer-

ical behaviour of the approach compares to that

of the linear quadratic approach case investigated

in (1). Details are given in (2).
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1. Motivation

Problems of optimal control take an extended
place in applied mathematics. The treatise of
nonlinear cost functionals and nonlinear con-
straints is often reduced by SQP-methods. This
approach leads us to the problem of finding a
solution of a linear-quadratic control problem.
We consider such problems with an elliptic state
equation and control constraints. The coefficients
are time dependent and we investigate systems of
controls and states, so the coefficients are matrix
functions.

The analytical solution of such problems is
rather complicated or impossible. To find a rea-
sonable numerical alternative we have to dis-
cretize the problem getting an approximation of
the exact solution, the optimal state and adjoint
state. Besides the obstacles of calculation such
a numerical solution we seek to determine the
occuring error. Together with the properties of
the exact trajectories deduced from the continu-
ous problem we develop upper bounds by means
of the mesh size.

2. Treatise of the problem

Our problem is to find a solution of the follo-
wing control problem with an elliptic constraint
and pointwise control constraints. The cost func-
tional is given by

J(z, u) =
1
2

T∫

0

|z(t)−zd(t)|2+u(t)TR(t)u(t) dt

while the state z is determined by

−(P (t)z(t)′)′ + A(t)z(t) = B(t)u(t) + e(t)

for almost all t ∈ [0, T ] and the boundary values
z(0) = z(T ) = 0. The values of the control
u are restricted to a ≤ u(t) ≤ b for almost all
t ∈ [0, T ], where a, b ∈ Rm with a < b and the
relations hold for each component. The matrix
functions P and R are supposed to be positive
definite and A positive semidefinit.

The control problem has a unique solution
ū ∈ C0,1(0, T,Rm) and with the adjoint state
p̄, the solution of the adjoint equation, the neces-
sary and sufficient optimality condition

(BTp̄ + ν ū, u− ū) ≥ 0 ∀u ∈ Uad

holds pointwisely for almost all t ∈ [0, T ].

3. DISCRETIZATION

Applying suitable discretization methods for the
equality constraint we estimate the error of the
numerical solution and compare the assumptions.
Building a bridge to a discretization of the con-
trol problem it is possible to develop error esti-
mates for the discrete optimal control by using
the discrete optimality conditions. The discrete
concepts like the analogue of the continuous dif-
ferential operator are useful because they mir-
ror the main aspects of the continuous case, e.g.
the selfadjointness is kept. The discretization of
the control problem itself gives the circumstances
which are necessary to use the properties of the
discretization method.

The methods we used help us to find a nu-
merical solution of the elliptic constraint. The
error measured by powers of the mesh size is
of order two. Afterwards we see that this prop-
erty is transmitted on the control but only in the
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nodes. To construct an continuous control we
have to use the values at the nodes, but the er-
ror is now dominated by this last step. At the
end we get for piecewise constant controls linear
convergence and for piecewise linear controls h

3
2 .

A post-processing step finalize the computation
and improve the order in both case to a quadratic
behaviour.

In Figure 1 the continuous and the discrete
control is shown. One can see clearly the most
interesting points are the switching points where
the control constraints become active or inactive.
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Fig. 1. Optimal control (thin line) and numerical so-
lution (thick line).

In Figure 2 the error is sketched again the
mesh size.
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Fig. 2. Error between optimal control and post-pro-
cessed discrete control.

4. CONCLUSIONS

The different methods of discretization of the
given control problem cause different obstacles
by finding a numerical solution. We develop
error estimates and show connections between
them and maintain the different assumptions to
be made. In all cases the numerical solution has
an order of convergence like the interpolate in the
particular discrete space, measured in powers of
the mesh size. Further it is possible the improve
this by a post-processing which is explained af-
terwards.
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We consider the optimal control problem on
a fixed time interval [t0, t1]:

ẋ = f(t, x) + F (t, x)u, u ∈ U(t),
ηj(p) = 0, j = 1, . . . , µ,
ϕi(p) ≤ 0, i = 1, . . . , ν,
J = ϕ0(p) → min,

where x ∈ Rn, u ∈ Rr, p = (x(t0), x(t1)),
and analyze a process (x0, u0) with u0(t) go-
ing strictly inside U(t). Assume that Maxi-
mum Principle holds with the Pontryagin func-
tion H = ψ (f(t, x) + F (t, x)u) and the termi-
nal Lagrange function l(p) =

∑ν
i=0 αi ϕi(p) +∑q

j=1 βj ηj(p), where α0, . . . , αν ≥ 0, β not all
zero, are unique up to the normalization.

Since the second variation Ω(x̄, ū) of La-
grange function does not contain ”the main”
Legendre term with ū2, we have a totally singular
extremal. The previous results by the author and
others give necessary and sufficient conditions
for optimality (in the sense of weak minimum)
of the given process (x0, u0), which consist in
the sign definiteness of Ω on the cone of criti-
cal variations with respect to the following esti-
mating quadratic functional, that we regard as a
quadratic order of minimum:

γ(x̄, ū) = |x̄(t0)|2 + |ȳ(t1)|2 +
∫ t1

t0

|ȳ(t)|2 dt,

where ˙̄y = ū , ȳ(t0) = 0.

In the case of so-called Pontryagin minimum
some equality type conditions on coefficients of
the third variation should be added.

The most ”unpleasant” term in γ is |ȳ(t1)|2.
Here we consider the reduced quadratic order

γ′(x̄, ū) = |x̄(t0)|2 +
∫ t1

t0

|ȳ(t)|2 dt,

and specify the cases where the positive definite-
ness of Ω with respect to γ′ ensures the weak or
Pontryagin minimum at (x0, u0).

Theorem. Suppose that the Pontryagin and
terminal Lagrange functions for the reference
process satisfy the conditions

H ′′
xu(t1) = 0, l′′x0 x1

(p0) = 0, l′′x1 x1
(p0) = 0,

while the cost functional and terminal constraints
satisfy the conditions

ϕ′′
i x1 x1

(p0) = 0, η′′
j x1 x1

(p0) = 0, ∀ i, j.

In this case, if ∃ a > 0 such that

Ω(w̄) ≥ a γ′(w̄) for all w̄ ∈ K,

then w0 provides a strict weak minimum. If, in
addition Huxx(t1) = 0, then w0 provides a strict
Pontryagin minimum. �

If F does not depend on x, then the positive
definiteness of Ω with respect to γ guarantees
the strong minimum at (x0, u0), and we specify
some cases when γ can be reduced to γ′.

We also consider the case where the time in-
terval [t0, t1] is variable, and give similar opti-
mality conditions.
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The paper concerns parameter dependent op-
timal control problems, governed by nonlinear
ODEs and subject to state constraints of the
first order. In recent papers of the author (see
(1; 2; 3; 4)), weakened conditions are derived,
under which the solutions and Lagrange multi-
pliers of the problems are locally Lipschitz con-
tinuous and directionally differentiable functions
of the parameter. The conditions consist of stan-
dard constraint qualifications and weakened sec-
ond order sufficient optimality conditions, which
should be satisfied at the reference point. The
second order conditions are weakened by taking
into account the strongly active state constraints.

In the present paper, it is shown that, in the
case of the so called canonical perturbations,
those conditions are not only sufficient, but also
necessary, for Lipschitz stability and directional
differentiability of the solutions and Lagrange
multipliers. Thus, they constitute a characteri-
zation of those properties.
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This talk deals with stability and sensitiv-

ity analysis for optimal control problems of an

ordinary differential equation with a first-order

state constraint. We consider the case when the

Hamiltonian and the state constraint are regu-

lar. Malanowski (2) obtained Lipschitz continu-

ity and directional differentiability of solutions

in L2, using generalized implicit functions theo-

rems in infinite dimensional spaces, and without

any assumptions on the structure of the trajectory.

Malanowski and Maurer (3) proved that the so-

lution and multipliers are C1 with respect to the

parameter by application of the implicit function

theorem to the shooting mapping, when there are

finitely many junction times and strict comple-

mentarity holds. Under those assumptions the

structure of the perturbed solutions is stable.

The shooting algorithm, known to provide

the solution of optimal control problems with

a very high precision and low cost, requires in

return a careful initialization of all parameters,

as well as a knowledge a priori of the structure

of the optimal trajectory (number and order of

boundary arcs and touch points). In practice,

the latter is not known and even though, it re-

mains difficult to initialize the shooting parame-

ters. A method to make up for this difficulty is to

combine the shooting algorithm with an homo-

topy (or continuation) method. Starting from an

“easier” problem (e.g. the problem without the

state constraint), one solves a sequence of prob-

lems depending continuously from a parameter.

The more information we have on the continu-

ity/differentiability of solutions and shooting pa-

rameters with respect to the homotopy parameter,

the easier it is to follow the homotopy path, for

example using a predictor-corrector algorithm if

the homotopy path is C1. It is well known that

for first-order state constraints, touch points (lo-

cally unique times when the constraint becomes

active) are nonessential, i.e., strict complemen-

tarity never holds, and hence the structure of so-

lutions is not stable. Among the different possi-

bilities, a touch point can become inactive on the

perturbed problem, remain a nonessential touch

point, or it may give rise to a boundary arc.

Our main result is that, under natural hy-

potheses, these are the only three possibilities.

We provide first-order expansions of the solu-

tion, multipliers and of all the shooting parame-

ters. The main idea of the proof is to introduce

touch points as boundary arcs of zero measure in

the shooting formulation, and apply Robinson’s

strong regularity theory to a system of equalities

and inequalities, whose Jacobian corresponds to

the optimality conditions of the tangent linear

quadratic problem involved in the no-gap second-

order optimality conditions (see (1)).

We present an application of those results to

an homotopy method, whose novelty is to handle

automatically changes in the structure (appari-

tion/disparition of a boundary arc). Preliminary

numerical results are given.
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In the paper, we consider ODE driven optimal
control problems with bang-bang type extremals.
The specific nature of bang-bang controls causes
some difficulties in optimality and stability anal-
ysis. Usual convexity arguments like (strong)
Legendre-Clebsch condition fail to hold, and the
control discontinuity has to be taken into account.
In recent years, substantial results on second-
order optimality conditions have been obtained
in [8], also [6], [1], or [7]. The solution stabil-
ity under parameter perturbation was investigated
e.g. in [5] and [2], [3].
Optimality and stability conditions therein are:
(i) bang-bang regularity assumptions (finite
number of switches, excluding e.g. endpoints),
(ii) strict bang-bang properties (nonvanishing
time derivatives of switching functions at switch-
ing points e.g.),
(iii) assumption of simple switches (switch of no
more than one control component at each time),
(iv) appropriate second-order conditions (posi-
tive definiteness of related quadratic forms e.g.).

Stability properties for the switching points
localization had been obtained from the so-
called deduced finite-dimensional problem
using standard sensitivity results from nonlinear
programming, or from a shooting type approach
applied to the first-order system of conditions in
Pontryagin’s maximum principle e.g. [2], [4]).
Consider the parametric problem
(Ph) min k(x(T ), h)
s.t. ẋ(t) = f(x(t), h) + g(x(t), h) u(t) (∀) t,

x(0) = x0(h), h ∈ R – parameter,
|ui(t)| ≤ 1, i = 1, . . . ,m, (∀) t,

Stability investigations have shown
1. the differentiability of switching points w.r.t.
parameters under conditions (i), (ii) for linear
state systems (f = Ax, g = B), cf. [2],

2. differentiable behavior and local uniqueness
of structure of extremals for semilinear systems
(f = f(x), g = B) under (i), (ii), (iv), cf. [4],
3. Lipschitz behavior (and possible lack of
differentiability) for (P) in case of simultaneous
switches of two control components.
Up to our knowledge, the latter result is new.
The proofs are based on certain backward
shooting approach for characterizing broken
extremals and make use of nonsmooth Implicit
Function Theorems. For illustration, an example
will be provided.
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1. Introduction

In the last years a lot of papers were published
discussing the discretization error of a problem

1
2
‖y − yd‖2 +

ν

2
‖u‖2 = min !

subject to
y = Su

and
ua ≤ u ≤ ub.

Here S denotes the solution operator of an ellip-
tic boundary value problem. We are interested
in the case where the domain is polygonal (poly-
hedral).

Among these papers there are only a few
which recommend the usage of nonuniform
grids, see (1), (5). The common opinion is that
nonuniform meshes are only needed for problems
in nonconvex domains or for problems with sin-
gularities.

In this talk, we discuss several situations
where nonuniform grids can improve the approx-
imation rate.

2. Distributed control

For control constrained problems are at least two
approaches known which can ensure approxima-
tion rate h2 for the optimal control. The varia-
tional approach of Hinze (3) yields this rate for
convex domains in 2-d and 3-d. For the super-
convergence approach introduced by Meyer and
Rösch (4) the rate h2 is guaranteed only with
an additional angle condition in the 3-d case see
(6). Apel and Winkler obtain the same condition
in their studies. However, the condition is only
needed if the boundary between the active and
inactive set hits exactly the corner of the polyhe-
dral.

The situation changes if one is interested
in optimal rates also in the L∞-norm. Then,
nonuniform refinements are necessary for all cor-
ners with angle larger the π/2.

3. Boundary control

The situation is much more difficult for boundary
control problems. Let us focus first on Neumann
control problems. Here, two saturation effects
occur: First, an approximation rate of order h2−ε

for linear finite elements can only guaranteed if
the largest angle is smaller than π/2. In general,
a convergence rate of h3/2 is obtained for convex
domains.

The approximation rate is better for higher
order finite elements. The order h2 can be guar-
anteed if the largest angle is less than 2π/3. Nu-
merical studies of Mateos and Rösch observed
these approximation rates also numerically. Con-
sequently, nonuniform grids lead to better ap-
proximation results even for 2-d convex domains
with a largest angle greater than 2π/3.

Of course, the situation changes again for
Dirichlet boundary control. Casas and Raymond
(2) determine the approximation rate dependent
on smoothness properties of the solution opera-
tor. These properties depend on the size of the
largest angle of the polygon. Their error esti-
mates indicate that nonuniform grids increases
the approximation rate for 2-d convex domains
with a largest angle greater than π/2. Again,
nonuniform grids are needed in general if one is
interested in optimal rates in the L∞-norm.
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The talk is concerned with the discretiza-
tion of optimal control problems using stabi-
lized finite element methods, see [2].

We consider an optimal control problem
governed by a linear convection diffusion reac-
tion equation with the convection dominated
behavior. It is well known that for convec-
tion dominated problems standard finite ele-
ment discretizations lead to strongly oscilla-
tory solutions unless the mesh size h is suf-
ficiently small. Several stabilization meth-
ods are known to improve the approximation
properties of the pure Galerkin discretization
and to reduce the oscillatory behavior.

In [3] the authors apply the SUPG method
(streamline upwind Petrov Galerkin method,
see e.g. [5]) to the optimal control problem
governed by a convection dominated equa-
tion. They discuss two different approaches
to the discretization of the optimal con-
trol problem: “optimize-then-discretize” and
“discretize-then-optimize”. In the “optimize-
then-discretize” approach first the necessary
optimality conditions are established on the
continuous level consisting of the state, ad-
joint and the optimality equations, and then
these equations are discretized using a stabi-
lized finite element scheme, e.g. SUPG. In
the “discretize-then-optimize” approach the
state equation is discretized and then the
optimality system for the finite dimensional
optimization problem is derived. It is well

known that these two approaches lead to the
same discretization scheme provided a pure
Galerkin discretization is used. However, in
the presence of stabilization terms these ap-
proaches may differ. In [3] it is shown by
numerical computations that for the SUPG
discretization the “optimize-then-discretize”
approach leads to better asymptotic conver-
gence properties. However, the “discretize-
then-optimize” approach has the important
advantage of consistency of the state and the
adjoint equations on the discrete level which
is reflected in the fact that the corresponding
optimality system is symmetric.

In the paper [2] we analyze a stabiliza-
tion method, which leads to symmetric op-
timality systems and has optimal order of
convergence. For the resulting discretiza-
tion scheme the approaches “optimize-then-
discretize” and “discretize-then-optimize” co-
incide. The presented method uses standard
finite element discretization with stabiliza-
tion based on local projections (called LPS-
method), see [4] for convection diffusion reac-
tion equations and for the Stokes equations
see e.g. [1]. The control space is likewise dis-
cretized by first-order finite elements.

Our main contribution is the a priori er-
ror analysis of the discretization of the op-
timal control problem governed by a convec-
tion dominated equation. We obtain the es-
timate of order O(h3/2) for the L2-error in
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the control, state and the adjoint state in the
case without control constraints as well as in
the case with pointwise inequality control con-
straints.

Our results are optimal for the following
two reasons: First, it is well known that sta-
bilized finite elements leads to optimal order
of convergence of O(h3/2) in L2(Ω)-norm for
the convection diffusion reaction equations on
general quasi-uniform meshes. Second, the
presence of control constraints leads to the
fact that the optimal control q̄ is in general
not in H2(Ω) and only O(h3/2) convergence
can be expected for the piecewise (bi)linear
discretization of the control space, see e.g. [6].
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hasti
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him RehbergWeierstrass Institute for Applied Analysis and Sto
hasti
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hstr. 36A-8010 Graz, Austriawolfgang.ring�kfunigraz.a
.atKeywords: Optimal 
ontrol, thermistor problem, pointwise state 
onstraints, 
oupled systems1. THE APPLICATION PROB-LEMThe presented talk deals with the optimal 
on-trol of the thermistor problem that models the
ondu
tive heat transfer in a 
ondu
tor pro-du
ed by an ele
tri
 
urrent. This leads to thefollowing quasi-linear system of partial di�er-ential equations (PDEs):
∂tθ − div(κ∇θ) = (σ(θ)∇ϕ) · ∇ϕ in Q (1)

ν · κ∇θ + αθ = αθl onΣ (2)
θ(0) = θ0 in Ω (3)

−div(σ(θ)∇ϕ) = 0 in Q (4)
ν · σ(θ)∇ϕ = u on Σ0 (5)

ϕ = 0 on Σ\Σ0, (6)with a Lips
hitz domain Ω ⊂ R2, Q =

Ω×]0, T [, Σ = ∂Ω×]0, T [, and Σ0 =

Γ0×]0, T [, where Γ0 denotes a �xed part of
∂Ω. Moreover, θ represents the temperature,while ϕ is the ele
tri
 potential. Furthermore,
θl and θ0 are given fun
tions, and u is the

Ω m

Ω

u

Γ0

Fig. 1. Resistan
e stud welding
ontrol that 
an be interpreted as a 
urrentindu
ed on Γ0. A possible appli
ation for this
oupled system of PDEs is the resistan
e studwelding, where two work pie
es are welded to-gether by means of the Joule e�e
t (
f. Figure1).Our aim is to adjust the 
ontrol u su
h that
J(θ, u) :=

1

2
‖θ(T ) − θd‖

2
L2(Ωm) +

β

2
‖u‖2

L2(Σ0)
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is minimized subje
t to (1)�(6) and the fol-lowing inequality 
onstraints
ua ≤ u(t, x) ≤ ub a.e. on Σ0 (7)

θa(t, x) ≤ θ(t, x) ≤ θb(t, x) a.e. in Q. (8)Noti
e that (8) represents a pointwise state
onstraint that is known to be numeri
ally andtheoreti
ally 
hallenging to handle.2. DISCUSSION OF THE NON-LINEAR STATE SYSTEMBased on maximal paraboli
 and ellipti
 regu-larity results in the spirit of Gröger (3; 4), one
an employ Bana
h's 
ontra
tion prin
iple toshow existen
e and uniqueness of solutions in
(ϕ, θ) ∈ L∞(]0, T [;W 1,q(Ω)) ×

W 1,r(]0, T [;W 1,q′(Ω)∗) ∩ Lr(]0, T [;W 1,q(Ω))provided that u ∈ L∞(]0, T [;L2(Γ0)) and that
θ0 and θl are su�
iently smooth. Here, q isa �xed number in ]2, 4[ and r satis�es r >

2q/(q − 2) su
h that
W 1,r(]0, T [;W 1,q′(Ω)∗) ∩ Lr(]0, T [;W 1,q(Ω))

→֒ C([0, T ];C(Ω̄)),whi
h is needed for the derivation of �rst-orderne
essary optimality 
onditions by means ofthe Karush-Kuhn-Tu
ker theory (
f. (2)). No-ti
e that the required regularity of the optimal
ontrol is ensured by (7).3. FIRST-ORDER NECESSARYCONDITIONSSimilarly to the dis
ussion of the state sys-tem, the existen
e and uniqueness of solutionsfor the linearized state system 
an be shown.Based on that, in a standard way, the im-pli
it fun
tion theorem gives the 
ontinuousFré
het-di�erentiability of the 
ontrol-to-statemapping and the obje
tive fun
tional J , re-spe
tively. It is well known that the Lagrangemultipliers w.r.t. the pointwise state 
on-straints are in general regular Borel measuresand appear as inhomogeneity in the adjointequation. Using a duality argument a

ordingto Amann (1), the unique existen
e of solu-tions of this equation in Lr′(]0, T [;W 1,q′(Ω))2

is established, where r′ and q′ denote the 
on-jugate exponents of r and q. Corresponding tothe �rst-order 
onditions, a gradient methodhas been implemented to solve the optimal
ontrol problem. The asso
iated results willbe presented.4. CONCLUSION AND OUT-LOOKUp to now, in (5), we derived the �rst-orderanalysis for the optimal 
ontrol problem sub-je
t to (1)�(6), (7), and (8). In the near fu-ture, se
ond-order su�
ient 
onditions haveto be established. Furthermore, a

ording tothis, higher-order optimization methods, ase.g. SQP-methods, have to be implemented.REFERENCES[1℄ Amann, H. (2005): Nonautonomousparaboli
 equations involving measures,J. Math. S
i., 130, 4780�4816.[2℄ Casas, E. (1993): Boundary 
ontrol of semi-linear ellipti
 equations with pointwise state
onstraints, SIAM J. Control Optim., vol. 31,993�1006.[3℄ Gröger, K. (1989): A W 1,p-estimate for solu-tions to mixed boundary value problems forse
ond order ellipti
 di�erential equations,Math. Ann., vol. 283, 679�687.[4℄ Gröger, K. (1992): W 1,p-estimates for solu-tions to evolution equations to nonsmoothse
ond order ellipti
 di�erential operators,Nonlinear Analysis, vol. 18, 569�577.[5℄ Hömberg, D., Meyer, C., Rehberg, J., Ring,W. (2007): Optimal 
ontrol of the thermistorproblem, in preparation.

172



REGULARITY OF LAGRANGE MULTIPLIERS FOR OPTIMAL
CONTROL PROBLEMS WITH PDEs AND MIXED CONTROL

STATE CONSTRAINTS
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Johann Radon Institute for Computational and Applied Mathematics Linz, arnd.roesch@oeaw.ac.at
TU Berlin, Institute of Mathematics, troeltzsch@math.tu-berlin.de

Keywords: 49K20, 49N10, 49N15, 90C45

1. INTRODUCTION

Lagrange multipliers for distributed parameter

systems with mixed control-state constraints may

exhibit better regularity properties than those for

problems with pure pointwise state constraints,

(1), (2), (4). Under natural assumptions, they are

functions of certain Lp-spaces, while Lagrange

multpliers for pointwise state constraints are,

in general, measures. Following an approach

suggested in (3) for ODEs, a new and simplified

technique is applied to prove L1-regularity in

the case of elliptic PDEs. Moreover, an idea of

(5) is extended to derive L∞-estimates for the

Lagrange multipliers, along with the proof of

Lipschitz regularity of optimal controls.

2. OPTIMAL CONTROL PROBLEM

We consider first the following elliptic optimal

control problem:

minJ(y, u) =

∫

Ω
ϕ(x, y, u) dx+

∫

Γ
ψ(x, y) ds

(1)

subject to

Ay + d(x, y) = u in Ω

∂y

∂νA

+ b(x, y) = 0 on Γ
(2)

and to

gi(x, y(x), u(x)) ≤ 0 a.e. on Ω, i = 1, .., k.

(3)

The inequalities (3) are the mixed control-state

constraints.

In this setting, Ω ⊂ IRN , N ∈ IN, is a bounded

Lipschitz domain and A is a uniformly elliptic

differential operator of the form

Ay = −
N

∑

i,j=1

∂

∂xi

(

aij
∂

∂xj
y

)

+ c0 y

with coefficients aij ∈ C0,1(Ω̄), i, j = 1, .., N ,

where c0 ≥ 0 belongs to L∞(Ω) and satisfies

c0(x) > 0 on a set of positive measure.

The functions ϕ = ϕ(x, y, u) : Ω × IR2 → IR,

gi = gi(x, y, u) : Ω × IR2 → IR, ψ = ψ(x, y) :

Γ × IR → IR, d = d(x, y) : Ω × IR → IR, and

b = b(x, y) : Γ × IR → IR, are assumed to enjoy

the following properties ( consider all functions

formally as depending on (x, y, u)):

For all fixed (y, u), they are measurable with

respect to x ∈ Ω or x ∈ Γ, respectively. They

are partially differentiable with respect to (y, u)

for all fixed x ∈ Ω or x ∈ Γ. These functions

and their derivatives are locally Lipschitz with

respect to (y, u) in the sense that the associated

Lipschitz constant depends only on |y| + |u| but

not on x.

Moreover, we require that these functions and

their partial derivatives are essentially bounded

with respect to x in Ω or x ∈ Γ, respectively,

at (y, u) = (0, 0). The derivatives ∂d
∂y

(x, y) and
∂b
∂y

(x, y) are assumed to be nonnegative for al-

most all x ∈ Ω or x ∈ Γ to guarantee existence

and uniqueness of the solution y to (2).

3. REGULARITY OF LAGRANGE MULTI-

PLIERS

The existence of Lagrange multipliers is obtained

first in (L∞(Ω))∗, the dual space to L∞(Ω).

The elements of (L∞(Ω))∗ can be represented

173



by finitely additive set functions on Ω̄ that are

also called finitely additive measures.

To derive necessary optimality conditions, a

standard linearized Slater condition is assumed

as constraint qualification: There exist û ∈

L∞(Ω) and σ > 0 such that

gi(x, ȳ(x), ū(x)) +
∂gi

∂y
(x, ȳ(x), ū(x))ŷ(x)

+
∂gi

∂u
(x, ȳ(x), ū(x))û(x) ≤ −σ a.e. in Ω,

(4)

where ŷ = G′(ū)û is the directional derivative

of the control-to-state mapping G : u → y, G :

L∞(Ω) → H1(Ω) ∩ C(Ω̄).

Theorem 1: Suppose that ū with associ-

ated state ȳ is locally optimal for (1)–(3) and

the condition (4) is satisfied at (ȳ, ū). Then

there exist non-negative finitely additive measures

µi ∈ L∞(Ω)∗, i = 1, .., k, and an adjoint state

p ∈W 1,s(Ω) for all 1 ≤ s < N
N−1 , such that the

conditions

∫

Ω

(

∂ϕ

∂u
+ p

)

h dx+

∫

Ω

k
∑

i=1

∂gi

∂u
h dµi = 0

∀h ∈ L∞(Ω),
∫

Ω
gi(·, ȳ, ū) dµi = 0, i = 1, .., k,

and the adjoint equation

A∗p+
∂d

∂y
p =

∂ϕ

∂y
+

k
∑

i=1

(
∂gi

∂y

∗

µi)|Ω,

∂p

∂νA∗

+
∂b

∂y
p =

∂ψ

∂y
+

k
∑

i=1

(
∂gi

∂y

∗

µi)|Γ

are satisfied, if the derivatives of ϕ, ψ, gi, d, b

in the expressions above are taken at (x, ȳ, ū).

As linear continuous functionals on L∞(Ω),

the finitely additive measures µi must vanish on

sets of Lebesgue measure zero. Thanks to a theo-

rem by Yosida and Hewitt (6), each µ ∈ L∞(Ω)∗

can be uniquely written in the form µ = µc +µp,

where µc is countably additive and µp is purely

finitely additive. Moreover, if µ ≥ 0, then µc

and µp are non-negative, too.

For higher regularity of multipliers, the fol-

lowing assumption is needed: Define, for δ > 0,

the δ-active sets

M δ
i := {x ∈ Ω : gi(x, ȳ(x), ū(x)) ≥ −δ}.

Assume that there exist δ > 0 and ũ ∈ L∞(Ω)

such that

∂gi

∂u
(x, ȳ(x), ū(x))ũ(x) ≥ 1 a.e. on M δ

i (5)

holds for all i ∈ {1, .., k}.

This requirement is equivalent to a ”uni-

formly positive linear independency condition”,

cf. Dmitruk (3). For some types of constraints,

this assumption is automatically satisfied. In

other cases, the optimal solution must fulfill a

certain separation condition.

Theorem 2: If ū ∈ U , ȳ ∈ Y and µi ∈

L∞(Ω)∗, µi ≥ 0, i ∈ {1, .., k}, satisfy the first-

order optimality conditions of Theorem 1 and (5)

is satisfied, then the purely finitely additive parts

of all µi are vanishing so that all µi, i = 1, .., k,

can be represented by densities in L1(Ω).

The proof follows the one given by Dmitruk

(3) for the case of ordinary differential equations.

If the functions ϕ and gi, i = 1, .., k, are as-

sumed to be Lipschitz with respect to (x, y, u),

then locally optimal controls enjoy Lipschitz con-

tinuity, too. In associated parabolic control prob-

lems, Hölder continuity of the optimal controls

can be derived.
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[5] A. Rösch and D. Wachsmuth. Regularity
of solutions for an optimal control problem
with mixed control-state constraints. submitted,
2006.

[6] K. Yosida and E. Hewitt. Finitely additive
measures. Trans. Amer. Math. Soc., 72:46–66,
1952.

174



REGULARIZATION AND DISCRETIZATION OF CONSTRAINED
OPTIMAL CONTROL PROBLEMS

Svetlana Cherednichenko and Arnd Rösch
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1. INTRODUCTION

We are interested in error estimates for elliptic
optimal control problems with pointwise state
constraints or mixed constaints. In particular, the
main difficulties occur for cases with pure state
constraints. To overcome these difficulties we use
here a Lavrentiev type of regularization. Mixed
pointwise control-state constraints typically have
better theoretical and numerical properties than
state constrained problems. Moreover, the exis-
tence of bounded and measurable Lagrange mul-
tipliers was proven in [4]. The optimal control
problem with regularized state and control con-
straints is given by

min
(y,u)

1
2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω), (1)

subject to Ay = u in Ω

y = 0 on Γ,
(2)

0 ≤ u ≤ b a.e. in Ω, (3)

y ≥ yc + εu a.e. in Ω′, (4)

where Ω ⊂ R2 is a convex polygonal domain.
Assume Ω′ ⊂ Ω with dist(Ω′, ∂Ω) > 0, ν > 0.
Consider functions yc in L∞(Ω), yd in Lq(Ω)
for q > 2, and the control u in L∞(Ω). By S

we denote a linear continuous solution operator
of Ay = u such that y = Su. We reformulate
(1)-(4) in the following form

min
u

1
2
‖Su− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω)

u ∈ U ε
ad,

(Pε)

where U ε
ad := {u ∈ L∞(Ω)

∣∣ 0 ≤ u ≤ b, Su ≥
yc + εu a.e. in Ω} is a set of admissible con-
trols. The problem with regularized parameter
ε = 0 is denoted by (P ).

In the next sections we discuss regularization
and discretization errors. Our main aim is to
find a reasonable balance between regularization
and discretization parameters for the considered
problems.

2. REGULARIZATION ERROR

We are interested in the convergence rate with re-
spect to the regularized parameter ε. For analysis
we assume existence of Slater points and prove
error estimates by means of constucted feasible
controls

‖ȳ − ȳε‖L2(Ω) + ‖ū− ūε‖L2(Ω) ≤ cε
1
2 .

We have proven the stability properties of the
regularized problem with respect to noisy data
as well, see [1].

3. DISCRETIZATION ERROR

3.1. Discretization

We introduce a finite element based approxima-
tion of the regularized problem (Pε) and define a
discrete solution operator Sh. Now we are inter-
ested in error estimates with respect to the grid
size h. The discrete regularized problem is de-
noted by (Pεh). For analysis we use standard the-
ory for finite elements, moreover we recall some
results concerning the approximation of the dis-
crete solution operator for more smooth bound-
aries from [2]. Further, we introduce the L2−
projection, which maps from L2 to a discrete
space and refer to results of [3] for error estima-
tion with the projection operator.

3.2. Discrete Approximation for the Regularized
Problem

Consider the continuous problem (Pε) and dis-
crete problem (Pεh). Again, we assume the exis-
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tence of an inner point with respect to constraints
of (Pεh), where ε is an arbitrary but fixed value.
Therefore, for optimal controls ūε and ūεh to the
problems (P ) and (Pεh), respectively, the follow-
ing inequality holds

‖ūε − ūεh‖L2(Ω) ≤ ch
1
2 ,

where c is a positive constant independent of h

and ε.

3.3. Discrete Approximation for the Unregular-
ized Problem

To improve the error estimate we consider the un-
regularized continuous problem (P ), and in the
problem (Pεh) we now fix the regularization pa-
rameter ε be a fixed value of order h2. However,
it turns out that this tuning of the parameters in-
creases the theoretically obtained approximation.
We are able to show that for optimal controls ū

and ūεh to the problems (P ) and (Pεh), respec-
tively, the following error estimate holds true

‖ū− ūεh‖L2(Ω) ≤ ch1−β,

where β is arbitrary small and c is a positive
constant independent of h and ε.

4. CONCLUSIONS

The Lavrentiev type of regularization overcomes
analytical and numerical difficulties. We have
estimated the discrete error for regularized prob-
lem with respect to (Pε) and with respect to (P )
analytically. Theoretical analysis shows conver-
gence of order h

1
2 between the discrete regular-

ized problem and (Pε). The discrete approxima-
tion for (P ) consists of two errors: regularization
error and discretization error, where for the rela-
tion ε ∼ h2 we have estimated the convergence of
order h1−β . In both results analytical investiga-
tions were illustrated by numerical experiments.
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1. Introduction

A linear quadratic optimal control problem with
pointwise state constraints and control constraints
is considered. Furthermore, the control acts at
the boundary:

min J(y, u) :=
1
2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Γ)

s. t. −4y + y = 0 in Ω
∂ny = u on Γ

(P) ua ≤ u(x) ≤ ub a.e. on Γ
y(x) ≥ yc(x) a.e. in Ω,

where Ω ⊂ RN , N = 2, 3 is a bounded domain
with C0,1-boundary, ν > 0 is a fixed number,
yd and yc are given functions from L2(Ω). Fur-
thermore, ua and ub are given real numbers with
ua < ub.

The difficulty of low regularity of solutions
of problems with pointwise state constraints is
pointed out in (1). Therefore, different regular-
ization concepts are developed, see e.g. (2), (3),
(4) and (5). However, a direct extension of the
Lavrentiev regularization concept ((2), (4), (5)) is
not possible since the control acts at the bound-
ary. In a recent paper of Tröltzsch and Yousept
(6) a source representation was used to overcome
this problem.

We consider a modified optimal control prob-
lem with regularized state constraints by intro-
ducing a virtual control v:

minJε(y, u, v) :=
1
2
‖y − yd‖2L2(Ω)+

ν

2
‖u‖2L2(Γ) +

f(ε)
2
‖v‖2L2(Ω)

s. t. −4y + y = g(ε)v in Ω
∂ny = u on Γ

(Pε) ua ≤ u(x) ≤ ub a.e. on Γ
y(x) ≥ yc(x)− h(ε)v(x) a.e. in Ω

0 ≤ v(x) ≤ vb a.e. in Ω,

with a regularization parameter ε > 0. The
real valued and positive parameter function f(ε),
g(ε), and h(ε) can be chosen in general arbitrar-
ily.

2. Regularization error estimate

First we assume the existence of a feasible inner
point concerning the pointwise state constraints:

There exists a function û(x) with
ua ≤ û(x) ≤ ub a.e. on Γ, such that the corre-
sponding state ŷ fulfills ŷ(x) ≥ yc + τ a.e. in Ω
for some τ > 0.

This assumption yields the existence and
uniqueness of the optimal solutions of both prob-
lems. Next, we derive an error estimate for
the error between the solution of the unregular-
ized problem (P) and the modified problem (Pε).
Therefore, we construct feasible solutions of the
problems based on the optimal solution of the
other one respectively.

It is very easy to show the feasibility of the
optimal solution ū of problem (P) for the regu-
larized one, where the virtual control v̄ is equal
zero. On the other hand, the optimal solution ūε

of the problem (Pε) is in general not feasible for
problem (P). We construct for every ε > 0 the
control

uδ := (1− δ)ūε + δû,

which is feasible for (P) for every δ ∈ [δε, 1],
where we define

δε :=
κ(ε)

κ(ε) + τ
, κ(ε) := h(ε)vb +

Cg(ε)√
f(ε)

.

With the help of the feasible solutions, we derive
the following regularization error estimate:

ν‖ū− ūε‖2L2(Γ) + ‖ȳ − ȳε‖2L2(Ω) ≤

C1
κ(ε)

κ(ε) + τ
+ C2

(g(ε))2

f(ε)
.
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Furthermore, under the following assumptions

lim
ε→0

h(ε) = 0, lim
ε→0

g(ε)√
f(ε)

= 0

on the parameter functions, we ensure the strong
convergence of the regularized optimal solution
ūε to the optimal solution ū of problem (P).
Moreover, we obtain certain convergence rates
for the regularization error. For instance, the
choice

f(ε) ≡ 1, g(ε) = ε, h(ε) = ε

yields the approximation rate

‖ū− ūε‖L2(Γ) = O(
√

ε).

3. Numerical tests

We consider several numerical examples illus-
trating the influence of the parameter functions.
To this end, we construct analytical solutions of
the problem (P). Furthermore, we investigated
the behaviour of the error between the regular-
ized solutions and the optimal solution for ε ↓ 0
for different settings of the parameter functions
f(ε), g(ε) and h(ε).

The numerical tests justify the validity of the
regularization error estimate for different choices
of the parameter functions. Moreover, we ob-
served, that the calculated approximation rates
are better than the expected ones.
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ror estimates for the regularization of optimal
control problems with pointwise control and
state constraints. submitted

[3] Hintermüller M. and Kunisch K. (2006): Path-
following Methods for a Class of Constrained
Minimization Problems in Function Space.
SIAM J. Control and Optimization, 17(1):159-
187

[4] Meyer C., Prüfert U. and Tröltzsch F. (2005):
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1. Introduction

In this talk, we extend our investigations on in-
terior point methods for elliptic state-constrained
optimal control problems in [4] and [2] to the
parabolic case.

The main difficulty of the numerical analysis
of interior point methods for such problems is the
lack of regularity of Lagrange multipliers asso-
ciated with the state constraints. Therefore, it is
helpful to improve the properties of the multipli-
ers have to be improved by suitable regularization
techniques.

To consider the interior point algorithm in
function space, we suggested in [4], [2] a Lavren-
tiev type regularization. The Lavrentiev regular-
ization of elliptic problems was introduced in [3].
This method ensures regular Lagrange multipli-
ers and preserves, in some sense, the structure of
a state-constrained control problem. Moreover,
compared with a direct application of interior
point methods to state-constrained problems, the
regularization improves the performance of the
algorithm, [2].

Here we prove the convergence of a con-
ceptual primal interior point method in function
space. We confine ourselves to a problem with
linear equation and an objective functional with
observation at the final time. This seems to be
more challenging in the analysis than functionals
of tracking type.

2. Problem Setting

We consider the optimal control problem

minJ(y, u) =
1
2
‖y(T )− yd‖2

Ω +
κ

2
‖u‖2

Q (1)

subject to the parabolic initial boundary value
problem

yt −∇ · (A∇y) + c0y = u in Q,

∂ny + αy = 0 in Σ,

y(0) = 0 in Ω,

(2)

and to the pointwise state constraints

ya(x, t) ≤ y(x, t) ≤ yb(x, t) for all (x, t) ∈ Q.

(3)

In this setting, Ω ⊂ RN , N ≥ 1 is a bounded
domain with C1,1-boundary Γ, and (0, T ) is a
fixed time interval. We define Q := Ω × (0, T )
and Σ := Γ× (0, T ).

A is a symmetric matrix with aij ∈ C1,γ(Ω),
γ ∈ (0, 1). It is assumed to satisfy the condition
of uniform ellipticity. Moreover, functions c0 ∈
L∞(Q), yd ∈ L∞(Ω) and ya, yb from C(Q̄)
are given that satisfy ya(x, t) < yb(x, t) for all
(x, t) ∈ Q̄.

3. Interior Point Method

By the interior point method, the constrained
problem is transformed into a formally uncon-
strained problem by adding a logarithmic penalty
term to the objective functional J .

First, we intoduce the control-to-state operator
G, the observation operator S and the Lavretiev-
regularization operator D := G + λI . Let w :=
D−1u the new control.
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Now we are able to (re)define the problem:

minFµ(w) =
1
2
‖SDw − yd‖2

Ω +
κ

2
‖Dw‖2

(Q)

−µ

∫∫
Q

ln (w − ya) + ln (yb − w) dx dt,

where µ > 0 is a path parameter that will tend
to zero. To prove the existence of a solution of
problem (Q), we apply a method that has been
introduced in [4]. It considers the minimization
of Fµ in a closed subset and, at the same time,
finally permits to show that the solution wµ has
some positive distance to the bounds: We have
ya +τ ≤ wµ ≤ yb−τ for some sufficiently small
τ > 0 that depends on µ. We show that the
transformed problems are solvable and that the
associated central path, i.e. the mapping µ 7→
w(µ) exists.

A conceptual interior point algorithm in func-
tion space can be described by the following
steps.

Algorithm Choose 0 < σ < 1, 0 < eps, and
an initial function w0 ∈ L∞ such that ya + τ ≤
w0 ≤ yb − τ holds for some τ > 0 and take
µ0 > 0.
k = 0.
while µk > eps do {

µk+1 = σµk ,
dk+1 = −∂Hw(wk;µk+1)−1H(wk;µk+1)
wk+1 = wk + dk+1

k = k + 1
}

The code-sequence in the while-loop per-
forms one classical Newton step for solving the
equation H(wk+1;µk+1) = 0 for fixed µk+1.
We proof the convergence of this algirithm in
function space by using the refined Newton-
Mysovskikh theorem provided in [1].

At the end, the theoretical properties of the
algorithm are confirmed by numerical examples.

4. Conclusions

We have showed that by a Lavrentiev type reg-
ularization, the state constraints are transformed
to mixed control-state constraints which, after a
simple transformation, can be handled as control

constraints. Existence and convergence of the
central path are shown. Moreover, the conver-
gence of a short step interior point algorithm is
proven in a function space setting.
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1. ABSTRACT

In a previous paper, ref. (1) we considered con-
trol problems for differential inclusions of the
form

dx ∈ Axdt + B(dt)x + F (t, x)dt

+ g(t, x)ν(dt), x(0) = x0, t ≥ o (1)

where A is the generator of a C0-semigroup on
a Banach space E and B is an operator valued
measure countably additive in the uniform opera-
tor topology and ν is a countably additive vector
measure having bounded variation and {F, g} are
respectively multivalued and single valued maps.
The control is the vector measure ν. Here we
presented several results on the questions of ex-
istence of optimal controls and also necessary
conditions of optimality for control problems of
the form

J(ν) =
∫

I
`(t, x)dt + Φ(ν) −→ inf, (2)

ν ∈ Vad where Vad is a class of admissible vector
measures. We present a brief review of these
results.

In a recent paper ref. (2) , we consider the
class of evolution equations given by

dx = Axdt + B(dt)x + f(t, x)dt

+g(t, x)ν(dt), x(0) = x0, t ≥ o (3)

where {A,B, ν} are as described above. Here we
consider problems of structural control where the
operator valued measure B is treated as control.
The objective functional is given by

J(B) =
∫

I
`(t, x)dt + Φ(B) −→ inf, (4)

B ∈ Lad, where Lad is an admissible
class of operator valued measures contained in
Mc(Σ,L(E)) the space of operator valued mea-
sures countably additive in the uniform operator
topology having bounded total variation.

Existence of optimal controls for linear and
semilinear problems are presented. Some results
on necessary conditions of optimality are also
presented. The basic results are illustrated by
several examples from systems governed by par-
tial differential equations of parabolic and hy-
perbolic types containing coefficients which are
vector measures.

In the study of optimal controls involving op-
erator valued measures as controls many inter-
esting problems related to topology and func-
tional analysis are encountered not seen in the
study of regular control problems in infinite di-
mensional spaces. In refs.(1; 2) we assumed that
the operator valued measures are countably addi-
tive in the uniform operator topology. Recently
we have obtained similar results under weaker
assumptions that require countable additivity in
the strong or weak operator topologies. For ex-
ample, parabolic and hyperbolic systems of the
forms

dx + A(dt)x = f(t, x)α(dt), t ≥ 0 (5)

dẋ + Aoxdt + B(dt)ẋ

+C(dt)x = f(t)ν(dt), t ≥ 0, (6)

generalize the typical models considered by
J.L.Lions. Here {α, ν} are countably additive
nonnegative measures related to the operator val-
ued measures {A,B} respectively.

These results have wider application in sys-
tems governed by partial differential equations
with coefficients which are measures. This in-
cludes systems that may experience continuous
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as well as abrupt structural changes. Recently
we have been able to extend our previous results
on parabolic problems of the type given by (5)
to strongly nonlinear problems, see ref (3).
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Let X be a real Banach space, let A : D(A) ⊆
X → 2X be a multivalued m-accretive operator
and let F : D(A) → X be a locally Lipschitz
mapping. Given ξ ∈ D(A), we consider the
initial value problem{

y′(t) + Ay(t) 3 F (y(t))
y(0) = ξ .

The functions V, g : D(A) → (−∞,+∞] form
a Lyapunov pair for our problem if for every
ξ ∈ dom(V ) there exist T > 0 and a solution
y : [0, T ] → D(A) such that t 7→ g(y(t)) is
integrable on [0, T ] and we have

V (y(t))+
∫ t

0
g(y(s))ds ≤ V (ξ) for all t ∈ [0, T ].

If g = 0, the classical definition of a Lyapunov
function V is recovered.

Kokan and Soravia (5, Theorem 1.2) charac-
terized the Lyapunov pairs in terms of viscosity
solutions of a related differential inequality.

We provide a different and more explicit char-
acterization of Lyapunov pairs (V, g) without
making use of viscosity solutions, namely, V and
g form a Lyapunov pair if and only if

DAV (x)F (x)+g(x) ≤ 0 for all x ∈ dom(V ) ,

where DAV is the contingent derivative asso-
ciated to the operator A. Some requirements
needed in (5) are weakened in our treatment.

The characterization of a Lyapunov pair (V, g)
given above was already obtained in (4) in the
case where X is a Hilbert space, A is a max-
imal monotone linear operator, F is Lipschitz
continuous and V is lower semicontinuous. The
approach in (4) is based on the representation for-
mula of the mild solution for a linear operator A.
This does not apply in our nonlinear framework.

The abstract result is used to discuss two sig-
nificant applications. The first one points out
the existence of global solutions, i.e., defined on
[0,+∞), of an initial value problem with a multi-
valued ω-m-accretive operator and a locally Lip-
schitz term satisfying a unilateral growth condi-
tion. This is the consequence of certain a priori
estimates which extend those proved by Fattorini
(6, Theorem 5.2) in the case where the operator
is linear.

The second application sets forth a new
method in the study of controllability for a gen-
eral control system involving a multivalued ω-
m-accretive operator and an additional nonlinear
term. Specifically, we provide a verifiable crite-
rion of null-controllability with an explicit esti-
mate of the time taken by a state to be steered to
the origin. Our controllability results are more
general and use a different approach in compar-
ison to the corresponding results in (1; 2; 3).

REFERENCES

[1] Barbu, V. (1991): The dynamic programming
equation for the time-optimal control problem
in infinite dimensions. SIAM J. Control Optim.,
vol. 29, 445-456.
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Vintage capital models of the economic 
growth theory describe optimal capital 
replacement under various restrictions on 
technological change, available resources, 
and natural environment. Such models are 
represented by non-linear Volterra integral 
equations with unknowns in the integration 
limits [1, 2]. In Operations Research and 
management science, similar processes of 
asset (machine, equipment) replacement are 
usually modeled in discrete time as integer 
programming (IP) problems. These two 
alternative techniques describe the same 
controlled dynamic process and possess 
their own theories. A rigorous comparative 
analysis of these theories is beneficial for 
both OR and economics. 
       The paper analyzes continuous and 
discrete replacement models and explores 
connections between them. It develops a 
new innovative methodology to analyze the 
replacement dynamics under technological 
change. Such issues as the dynamics of 
variable optimal lifetime, the impact of 
technological change, optimal capital 
accumulation, finite and infinite-horizon 
optimization, single - and multi-machine 
replacement, multi-factor production 
functions with energy and resource factors, 
nonlinear utility, discontinuous technical 
progress, and technological breakthroughs 
are discussed. In particular, it is proven that 
both continuous and discrete replacement 
models lead to the same nonlinear integral 
equations of a new type for optimal asset 

lifetime. This greatly simplifies the original 
control problem. The following two sections 
illustrate the general idea of the talk.   
 
1. A basic discrete replacement model. Let 
a production shop keep Pj machines during 
elementary time period j, j∈N, Pj∈N, where 
N is the set of natural numbers. In the 
discrete time j = 0,1,2,…., the rational 
machine replacement policy can be 
described as the minimization of the 
discounted total replacement cost  

        
∑∑∑

−===

+

==
j

Ljk
kjk

T

j

j
T

j
jj

j

jj

j

mMmÐ

TjLmI

11

),...,1,,(

ρρ
    (1) 

under the condition  

        ,,...,1    , TiPm i

i

Ltj
j

i

==∑
−=

               (2) 

with the unknown numbers mj of purchased 
new machines and machine lifetimes Lj, 
1≤j≤T, T≤∞. 
       The replacement problem (1)-(2) is a 
discrete -time IP problem with the unknowns 
mj∈N and Lj∈N, 0≤ mj ≤ mmax, 0≤ Lj ≤ Lj+1, 
1≤ j ≤ T, subjected to constraint (2).        
       Despite its formal simplicity, model (1)-
(2) is pretty general and covers many 
replacement models. It assumes that the 
industry operates under conditions of 
improving technology when newer vintages 
of machines require less maintenance. In 
economics, these conditions are known as 
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the technological change embodied in new 
capital equipment (new vintages of 
machines).   
      Analysis of problem (1)-(2), including 
extremum conditions, is difficult. Three 
assumptions that make (1)-(2) an IP problem 
are: the time is discrete and integer (j∈N), 
machine numbers are integer (mj∈N), and 
machine lifetimes are integer (Lj∈N). As 
usually for similar problems, it is beneficial 
to consider a real-valued analogue of the IP 
problem. In this talk, we analyze what 
happens if we relax all or some of these 
assumptions. In particular, our approach 
helps to construct efficient numeric 
algorithms. 
 
2. Continuous–time replacement model. If 
we switch from the discrete time j=1,2,…,T 
to the continuous time t∈[0,T), then the IP 
problem (1)-(2) leads to the following 
optimal control problem: find the unknown 
functions m(t) and L(t), 0≤m(t)≤mmax, 
L(t)’≤1, t∈[0,T), that maximize 
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and satisfy constraint 
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and a certain initial condition on a prehistory 
[L(0), 0]. 
       Problem (3)-(4) describes the well-
known vintage capital model of a firm, 
whose modifications have been investigated 
by Malcomson, van Hilten, Boucekkine, 
Germain & Licandro, Hritonenko & 
Yatsenko, and others. We prove that the 
problem (3)-(4) is convex and derive the 
necessary and sufficient condition for an 
extremum. It allows us to describe the 
complete dynamics of the optimal 
trajectories in the cases of infinite (T=∞) and 
finite (T<∞) horizons. 
        The structure of the (3)-(4) solutions 
appears to be determined by the solution 
a~ (t), t∈[0,∞), of the integral equation  
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where a-1(t) is the inverse of the function 
a(t)=t-L(t).  
       Equation (5) is a key for the optimal 
replacement decision. There is no general 
theory for such equations, but our technique 
allows to analyze and numerically solve (5) 
in many meaningful special cases. The 
obtained properties of (5) solutions describe 
the qualitative dynamics of the optimal asset 
lifetime; in particular, show how the optimal 
lifetime depends on the intensity of 
technological change. 
  
3. Numeric simulation. To demonstrate 
theoretic advantages and applied benefits of 
the proposed technique, a numeric example 
on real automotive industry data about the 
optimal replacement of passenger cars is 
considered. We provide a series of 
experiments with the variable asset lifetime, 
which confirm the theoretical findings of the 
paper. In particular, that more intensive 
technological change decreases the optimal 
lifetime of assets (and the inverse).  
 
4. Possible generalizations. Modifications 
of the models (1)-(2) and (3)-(4) can take 
into account additional assumptions about 
endogenous technological change, resource 
restrictions, the environmental impact, 
economies and diseconomies of scale, fixed 
and adjustment costs, various financial, 
demographic, social, and other issues.  
       In conclusion, some open issues in 
mathematical modeling of the optimal asset 
replacement are highlighted. 
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The variational inequality approach to the economic equilibrium problem in reflexive
Banach spaces based on the theory of pseudomonotone multivalued mappings (see [1] and
[2]) turns out to be useful to establish some existence results for a class of Pareto optimal
problems. The main advantage of this approach is that no interior points of the effective
domains of the multiobjective functions under considerations are required.

Let X be a separable, reflexive Banach space, X? its dual and 〈· , ·〉 the pairing over
X? ×X. Assume K ⊂ X to be a closed convex cone with its positive polar K+ = {τ ∈
X? : 〈τ, x〉 ≥ 0 ∀x ∈ K}. It is not required that K contains interior points.

Assume that Vj : X → R ∪ {+∞}, j = 1, . . . ,m, are convex, proper and lower
semicontinuous functions and φj : K+ → R with φj(τ) ≥ 0, ∀ τ ∈ K+, j = 1, . . . ,m,
are continuous functions on K+ with nonnegative values. Set V j : = Vj + indK, j =
1, . . . ,m. Moreover, assume Φ =

∑m
j=1 φj.

Consider the following two problems:
Economic Equilibrium Problem: Find π ∈ K+ and xj ∈ K, j = 1, . . . ,m, such as
to satisfy the conditions:

Vj(xj) = min {Vj(x) : 〈π, x〉 ≤ φj(π), x ∈ K} , j = 1, . . . ,m,〈
−

m∑
j=1

xj, τ − π
〉

+ Φ(τ)− Φ(π) ≥ 0, ∀ τ ∈ K+;

 (EEP)

and
Multiobjective Optimization Problem: Find π ∈ K+ such that

Minimize
(
Φ(π), V

?

1 (−π), . . . , V
?

m(−π)
)

subject to π ∈ K+ \ {0}.

}
(MOP)

Based on the existence results established for (EEP ) some sufficient conditions for (MOP )
will be shown without any requirements concerning the existence of interior points in K+

for a class of positive homogeneous multiobjective vector functions of an arbitrary positive
degree.
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Let us consider a control system described by
the following system of the second order equa-
tions
··
x(t) = Gx(t, x(t), u(t)), t ∈ I := (0,∞) a.e,

(1)
with the initial condition

x(0) = 0, (2)

where G : I × Rn × M → R, Gx is the gra-
dient of G with respect to x ∈ Rn, M ⊂ Rm

is a fixed set. On the controls u(·) we assume
that they belong to a set Up of functions belong-
ing to Lp(I, Rm) that take the values in the set
M , p ∈ [1,∞]. The space of solutions to the
above system we define as the classical Sobolev
space H1(I, Rn) of functions x : I → Rn being
absolutely continuous on each bounded interval
[0, T ] ⊂ I and satisfying the following conditions∫

I
|x(t)|2 dt < ∞ and

∫
I

∣∣∣ ·x(t)
∣∣∣2 dt < ∞.

Each of the functions x(·) ∈ H1(I, Rn) pos-
sesses limits at t = 0, t = ∞ and lim

t→∞
x(t) =

0. By H1
0 (I, Rn) we denote the subspace of

H1(I, Rn) consisting of all functions satisfying
initial condition x(0) = 0.

We say that a function x(·) ∈ H1
0 (I, Rn) is a

weak solution to (1)-(2), if∫
I

〈
·
x(t),

·
h(t)

〉
+〈Gx(t, x(t), u(t)), h(t)〉 dt = 0

for any h(·) ∈ H1
0 (I, Rn).

One can show that weak solution x(·) to (1)-
(2) possesses a second order (classical) derivative

∗This work is a part of the research project N514 027
32/3630 supported by the Ministry of Science and Higher
Education (Poland).

··
x(t) for t ∈ I a.e. and satisfies the control system
(1) a.e. on I (we say in such a case that x(·) is
a Caratheodory solution to (1)-(2)).

To study optimal control problems connected
with control systems defined on unbounded in-
terval I one uses different concepts of optimality
of an integral type.
Definition 1 Let f : I × Rn ×M → R. We say
that an admissible pair (i.e. satisfying control
system (1)) (x∗, u∗) ∈ H1

0 (I, Rn)× Up is
a) classically optimal, if∫

I
f(t, x∗(t), u∗(t))dt ≤

∫
I
f(t, x(t), u(t))dt

for any admissible pair (x, u) ∈ H1
0 (I, Rn)×

Up;
b) strongly optimal, if

lim
T→∞

(
∫ T

0
f(t, x∗(t), u∗(t))dt−∫ T

0
f(t, x(t), u(t))dt) ≤ 0

for any admissible pair (x, u) ∈ H1
0 (I, Rn)×

Up;
c) overtaking, if

lim sup
T→∞

(
∫ T

0
f(t, x∗(t), u∗(t))dt−∫ T

0
f(t, x(t), u(t))dt) ≤ 0

for any admissible pair (x, u) ∈ H1
0 (I, Rn)×

Up;
d) weakly overtaking, if

lim inf
T→∞

(
∫ T

0
f(t, x∗(t), u∗(t))dt−∫ T

0
f(t, x(t), u(t))dt) ≤ 0
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for any admissible pair (x, u) ∈ H1
0 (I, Rn)×

Up.
Optimal control problems connected with sys-

tems defined on unbounded time interval are
called infinite horizon optimal control problems.
In the case of bounded interval I , one investi-
gates, in general, one type of cost functional,
namely, that given in definition a). When I =
(0,∞) assumptions concerning the integrability
of the function I 3 t 7−→ f(t, x(t), u(t)) ∈ R
are often too restrictive and they are not fulfilled
in some (for example, economical) applications.
So, in such a case it is necessary to consider
some other concepts of optimality, for instance
that given in definitions b), c), d). A review of
the concepts of optimality for problems with infi-
nite horizon and their interrelationships are given
in (1) (cf. also (2)).

Assuming, among other things, that
a) G, Gx and f are measurable in t ∈ I , contin-

uous in (x, u) ∈ Rn ×M and satisfy the fol-
lowing growth condition: there exist constants
a1, a2, c3 > 0 and functions b1(·), b2(·) ∈
L2(I, R), c1(·), c2(·), b3(·) ∈ L1(I, R), such
that

a1 |x|2 + b1(t) |x|+ c1(t) ≤
G(t, x, u) ≤ a2 |x|2 + b2(t) |x|+ c2(t),

|Gx(t, x, u)| ≤ c3 |x|2 + b3(t),

for t ∈ I a.e., x ∈ Rn, u ∈ M ,
b) G is convex in x and lipschitzian in u

we prove that for any admissible control
u(·) ∈ Up there exists a unique solution xu(·) ∈
H1

0 (I, Rn) to control system (1)-(2) and it de-
pends continuously on controls. More precisely,
if a sequence (uk)k∈N ⊂ Up of controls con-
verges in Lp(I, Rm) with respect to the norm
topology to a control u0 ∈ Up, then the sequence
(xk)k∈N of corresponding trajectories converges
weakly in H1

0 (I, Rn) to x0 being the trajec-
tory of system (1)-(2), corresponding to control
u0. Consequently, the sequence (xk)k∈N con-
verges to x0 uniformly on each bounded inter-
val [0, T ] ⊂ I . If the function G is affine in u

and p = ∞, the norm convergence of controls
can be replaced by the weak-* convergence in
L∞(I, Rm).

Using these stability results we prove two the-
orems (in general case and when G is affine in
u) on the existence of classically optimal solu-
tion to system (1)-(2). Next, as in (2) for the first
order systems, we derive an optimality principle
and prove a maximum principle which gives nec-
essary conditions for optimality in the sense of
each optimality definition given in Definition 1.
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1. INTRODUCTION

Let X be a Banach space, a ∈ R, A : D(A) ⊆
X → 2X such that A−aI is an m-dissipative op-
erator, g : X → X a given function, ξ ∈ D(A),
and c(·) a measurable control taking values in
D(0, 1). Here, the problem we consider is how
to find a control c(·) in order to reach the origin
starting from the initial point ξ in some time T ,
by C0-solutions of the state equation{

u′(t) ∈ Au(t) + g(u(t)) + c(t)
u(0) = ξ.

(1)

Let us consider G : X → 2X , defined by
G(x) = ax+g(x)+D(0, 1). We can rewrite the
above problem as follows. For a given ξ ∈ D(A),
find T > 0 and a C0-solution of multi-valued
fully nonlinear Cauchy problem{

u′(t) ∈ (A− aI)u(t) + G(u(t))
u(0) = ξ,

(2)

that satisfies u(T ) = 0.

2. RESULTS

The main result is given by the following theo-
rem.

Theorem 1. Let X be a Banach space whose
dual is uniformly convex, let A : D(A) ⊆ X →
2X be such that A−aI is an m-dissipative opera-
tor which is the infinitesimal generator of a com-
pact semigroup of contractions, {S(t) : D(A) →
D(A); t ≥ 0}, let g : X → X be a continuous
function such that for some L > 0 we have

‖g(x)‖ ≤ L‖x‖, (3)

for every x ∈ X . Assume 0 ∈ D(A) and 0 ∈
A0. Then, for every ξ ∈ D(A) with ξ 6= 0
there exists a C0-solution u : [0,∞) → X of (2)
which satisfies the inequation

‖u(t)‖ ≤ ‖ξ‖ − t + (L + a)
∫ t

0
‖u(s)‖ds (4)

for every t ≥ 0 for which u(t) 6= 0.

From this theorem it follows
Corollary 1. Under the hypothesis of Theo-

rem 1 the following properties hold.
(i) In case L + a ≤ 0, for any ξ ∈ D(A), ξ 6= 0,

there exist a control c(·) and a C0-solution of
(1) that reaches the origin of X in some time
T ≤ ‖ξ‖ and satisfies

‖u(t)‖ ≤ ‖x‖ − t (5)

for any 0 ≤ t ≤ T .
(ii) In case L+a > 0, for every ξ ∈ D(A) satisfy-

ing 0 < ‖ξ‖ < 1/(L+a), there exist a control
c(·) and a C0-solution of (1) that reaches the
origin of X in some time

T ≤ 1
L + a

log
1

1− (L + a)‖ξ‖
,

and satisfies

‖u(t)‖ ≤ e(L+a)t

(
‖ξ‖ − 1

L + a

)
+

1
L + a

(6)
for any 0 ≤ t ≤ T .
The proof of Theorem 1 is based on recent

flow-invariance results presented in (Cârjă et.al,
2007).
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In the talk we present a martingale problem connected with stochastic inclusions driven by a general semi-
martingale. This approach enables us to formulate equivalent results on existence of weak (or martingale) 
solutions to such inclusions and then analyze some properties of weak solutions set. Presented results 
extend some of those being known both for deterministic differential inclusions and stochastic differential 
inclusions driven by Brownian motion. 
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INCLUSIONS

BORIS S. MORDUKHOVICH1

Department of Mathematics, Wayne State University
Detroit, Michigan 48202, boris@math.wayne.edu

and

DONG WANG
Department of Mathematics and Computer Science, Fayetteville State University

Fayetteville, North Carolina 28301, dwang@uncfsu.edu

This talk mainly concerns optimal control problems with general endpoint constraints for
semilinear parabolic inclusions in reflexive and separable Banach spaces. First we consider
the following optimal control problem for unbounded semilinear evolution inclusions with
general endpoint constraints:

minimize I[x] = φ
(
x(1)

)
over mild continuous trajectories x : [0, 1] → X for the semilinear evolution inclusion

ẋ(t) ∈ Ax(t) + F (x(t), t), x(0) = x0 ∈ X

subject to the endpoint constraint

x(1) ∈ Ω ⊂ X,

where A : X → X is an unbounded generator of the compact C0-semigroup {eAt| t ≥ 0}
and where Ω ⊂ X is a closed set of a reflexive and separable space X. A special case of
F (x, t) = f(x,U, t) with a control set U relates to semilinear control evolution equations
considered in PDE control theory for smooth data.

Developing the method of discrete approximations [1, 2, 3], we establish stability of dis-
crete approximations in the sense of the uniform convergence of their optimal solutions to
the reference optimal solution for the original problem. Based on the advanced tools of vari-
ational analysis and generalized differentiation, we derive necessary optimality conditions
for discrete-time problems and then, by passing to the limit from discrete approximations,
obtain necessary conditions of the Euler-Lagrange type for the above problem governed by
unbounded evolution inclusions.

The method of discrete approximations and the necessary optimality conditions derived
for the above control problem governed by evolution inclusions are applied to the following

1Research was partly supported by the National Science Foundation under grant DMS-0304989 and

DMS-0603846 and by the Australian Research Council under grant DP-0451168.
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optimal control problem governed by multidimensional semilinear parabolic inclusions:

minimize J [y] =
∫ T

0

∫
Ω

ϕ
(
y(t, x)

)
dxdt

over continuous mild solutions y : [0, T ] × IRn → IRn to the semilinear parabolic partial
differential inclusion 

yt ∈ ∆y + G(t, x, y), (t, x) ∈ (0, T )× Ω,

y |∂Ω= 0,

y(0, x) = y0(x), x ∈ Ω ⊂ IRn,

where G : [0, T ]×Ω× IRn →→ IRn is a set-valued mapping between finite-dimensional spaces.
The results obtained on necessary optimality conditions seem to be among the first

results in the literature dealing with optimization problems governed by parabolic inclu-
sions vs. equations, although most of them are also new for nonsmooth equations. Their
formulations involve the basic generalized differential constructions by the first author com-
prehensively developed in [1].
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In this paper we consider a second order evo-

lution inclusion with a coercive viscosity ope-

rator and a multivalued term of subdifferen-

tial form. The study is motivated by the dy-

namic problem of frictional contact between a

viscoelastic piezoelectric deformable body and a

foundation. The interaction between the body

and the foundation is described, due to the skin

effects, by a nonmonotone possibly multivalued

law between the bonding forces and the corres-

ponding displacements. This law is expressed

by the Clarke subdifferential of a locally Lip-

schitz nonconvex nonsmooth superpotential and

leads to a hemivariational inequality of hyper-

bolic type. Such inequality results from the

d’Alembert principle for a dynamic mechanical

system (1; 6).

On the other hand our model concerns piezo-

electric materials. Such materials are dielectrics

which exhibit significant deformations in re-

sponse to an applied electric field (direct efect)

as well as dielectric polarization in response to

mechanical strains (converse efect). Both effects

were discovered by Jacques and Pierre Curie in

1880-1881 but only recently such bodies have

been used in smart material technology. The lin-

ear constitutive equations coupling the mechan-

ical and electrical quantities in the piezoelectric

materials were formulated by Voigt in 1910.

Some materials are naturally piezoelectric,

e.g. crystals, living bones, human skin, etc.,

other that are manufactured with piezoelectric

characteristics are very important in many ap-

∗The work was supported by the State Committee for

Scientific Research of the Republic of Poland under the

Grant N201 027 32/1449.

plications, e.g. in biomechanics, biomedicine,

structural mechanics and in particular as sen-

sors, actuators, transducers, speakers and elec-

tronic clocks.

The present paper is a continuation of (2; 3;

4; 5), where the existence and uniqueness re-

sults for the hemivariational inequalities model-

ing the frictional contact for the piezoviscoelas-

tic materials were delivered. Our model problem

consists of a system coupled with the evolution

hemivariational inequality for the displacement, a

time dependent stationary equation for the elec-

tric potential and an ordinary differential equa-

tion for the bonding field. We prove the existence

of a weak solution to an abstract formulation of

the mechanical problem. Applications to contact

problems of electro-viscoelasticity are discussed.
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Phenomena of contact between deformable

bodies abound in industry and everyday life.

Contact of braking pads with wheels, tires with

roads, pistons with skirts are just a few simple

examples. Common industrial processes such as

metal forming, metal extrusion, involve contact

evolutions. Owing to their inherent complexity,

contact phenomena are modelled by nonlinear

evolutionary problems.

We consider a class of abstract evolution

hemivariational inequalities in the study of fric-

tional contact problems for viscoelastic materials

with long memory term. In the model dynamic

equation of motion is considered with the vis-

coelastic constitutive relationship of the Kelvin-

Voigt type, the contact is bilateral and the friction

is modeled with Tresca’s law. The term respon-

sible for memory of the body is given in the in-

tegral form of a linear continuous operator. The

multivalued boundary condition comes from the

nonconvex superpotential and can be written in

the form of a general subdifferential. The latter

leads to hemivariational inequalities as a varia-

tional formulation of our problem. The aim of

this presentation is to establish the existence of

weak solutions to the problem by using argu-

ments of evolution hemivariational inequalities,

in particular a surjectivity result for pseudomono-

tone mappings and a fixed point theorem.

We also study the dependence of the solution

on the memory term and derive a convergence

result. We show that a sequence of solutions cor-

∗The work was supported by the State Committee for
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Grant N201 027 32/1449.

responding to a long memory material converges

to a solution of the problem with short memory

as the relaxation coefficient tends to zero.
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1. Abstract

Let Ω ⊂ RN be a bounded domain with Lipschitz
boundary ∂Ω, Q = Ω × (0, τ) and Γ = ∂Ω ×
(0, τ), τ > 0. In this note we are concerned with
existence and comparison results of the following
parabolic variational inequality:

u ∈ Y0 ∩K, u(·, 0) = 0 :

〈ut + A(u) + F (u)− h, v − u〉 ≥ 0, (1)

for all v ∈ K, where K is a closed, convex sub-
set of X0 := Lp(0, τ ;W 1,p

0 (Ω)), Y0 = {u ∈ X0 :
ut ∈ X∗

0}, 〈·, ·〉 denotes the duality pairing be-
tween X∗

0 and X0, and p ∈ [2,∞). The operator
A : X0 → X∗

0 is related with a nonlinear elliptic
operator of Leray-Lions type in divergence form
given by

A(u)(x, t) = −
N∑

i=1

∂

∂xi
ai(x, t,∇u(x, t)),

and F is the Nemytskij operator associated with
the Carathéodory function f : Q×R×RN → R
by

F (u)(x, t) = f(x, t, u(x, t),∇u(x, t)).

We assume that h ∈ Lp′(Q) ⊂ X∗
0 , where p′ is

the Hölder conjugate of p.
Solutions of the variational inequality (1) are

usually referred to as strong solutions. There is
a large number of papers dealing with parabolic
inequalities under different structure and regular-
ity hypotheses of the data such as, e.g., (Charrier
et.al, 1978; Chipot et.al, 1988; Nagase, 1989; Pa-
pageorgiou et.al, 1997; Puel, 1976; Troianiello,
1983; Vivaldi, 1987) and the recent survey paper
(Rudd et.al, 2002).

Our main goal is to provide a systematic de-
velopment of the method of sub-supersolutions
for the parabolic variational inequality (1) for
general convex sets K. While the sub-
supersolution method is well established for par-
abolic equations that result from (1) in case that
K is the entire space X0, there are only a few
papers dealing with sub-supersolutions for (1) for
special K. Also, as will be seen in the sequel,
the arguments for parabolic variational inequali-
ties do not follow straightforwardly from neither
those for elliptic inequalities, nor those for par-
abolic equations.
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1. STATEMENT OF PROBLEM

In this paper we prove the existence of multi-
ple solutions for the following nonlinear periodic
problem:





(
a(t, u′(t))

)′ + ∂j(t, u(t)) 3 0
for a.a. t ∈ (0, T ),

u(0) = u(T ), u′(0) = u′(T ).
(1)

Here (t, y) 7−→ a(t, y) is a set-valued map
and ∂j(t, ζ) is the generalized subdifferential of
a generally nonsmooth locally Lipschitz poten-
tial ζ 7−→ j(t, ζ). Let p ∈ (1,+∞) and con-
sider the Sobolev space W 1,p

per((0, T )) = {u ∈
W 1,p((0, T )) : u(0) = u(T )}. Recall that
W 1,p((0, T )) is embedded into C([0, T ]) and so
the pointwise evaluation at t = 0 and t = T make
sense. For a given u ∈ W 1,p

per((0, T )), the mul-
tivalued term

(
a(t, u′(t))

)′ is interpreted as fol-
lows:

(
a(t, u′(t))

)′ = {v′ ∈ Lp′((0, T )), v(t) ∈
a(t, u′(t)) for a.a. t ∈ (0, T )}, where 1

p +
1
p′ = 1. Here derivative v′ is understood in the
sense of distributions. By a solution of prob-
lem (1) we mean a function u ∈ C1([0, T ]),
such that v′(t) = −u∗(t) for a.a. t ∈ (0, T ),
with v′ ∈ (

a(·, u′(·)))′ and u∗ ∈ Lp′((0, T )),
u∗(t) ∈ ∂j(t, u(t)) for almost all t ∈ (0, T ).

Our hypotheses on the set-valued map a(t, y),
include as a special case the scalar p-Laplacian
differential operator. Recently there has been in-
creasing interest for second order scalar periodic
differential equations involving the p-Laplacian
differential operator. We mention the works of
(Dang and Oppenheimer, 1996), (del Pino et.al,
1992), (Fabry and Fayyad, 1992), (Gasiński and
Papageorgiou, 2002, 2003), (Guo, 1993), (Papa-
georgiou and Papageorgiou, 2004), (Gasiński, to
appear , a,b).

2. EXISTENCE RESULT

The precise hypotheses on the data of (1) are the
following:
H(a): a(t, y) = ∂G(t, y), where G : (0, T ) ×
R −→ R is a functional, such that:
(i) the function (t, y) −→ G(t, y) is continuous;
(ii) for every t ∈ (0, T ), the function y 7−→
G(t, y) is strictly convex, G(t, 0) = 0 for all
t ∈ (0, T ) and

∂G(0, ·) = ∂G(T, ·);
(iii) for all t ∈ (0, T ), all y ∈ R and all v∗ ∈
a(t, y) = ∂G(t, y), we have

|v∗| 6 a1(t) + c1|y|p−1,

with a1 ∈ Lp′((0, T ))+ (where 1
p + 1

p′ = 1),
c1 > 0;
(iv) for all t ∈ (0, T ), all y ∈ R and all v∗ ∈
a(t, y), we have

v∗y 6 pG(t, y);

(v) for all t ∈ (0, T ) and all y ∈ R, we have

c0|y|p 6 G(t, y),

for some c0 > 0.
Suppose that β ∈ Cper([0, T ]), β > γ > 0 for

all t ∈ (0, T ) and

G(t, y) =
1
p
β(t)|y|p.

Then

a(t, y) = ∂G(t, y) = β(t)|y|p−2y

satisfies hypotheses H(a) and the resulting dif-
ferential operator is a weighted p-Laplacian. If
β ≡ 1, then we have the p-Laplacian. We re-
mark that hypotheses H(a) do not require that
the differential operator is homogeneous.
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Another possibility of G is the following

G(t, y) =
β(t)
p

[
(1 + y2)

p
2 − 1

]
,

with p > 1 and β ∈ Cper([0, T ]), β(t) > γ > 0
for all t ∈ (0, T ).

One more possibility of G is the following

G(t, y) =
β(t)
p

[
(1 + |y|)p − 1

]
,

where p > 1 and β are as above. In this case, the
map a is really multivalued and it still satisfies
hypotheses H(a).

As for the potential function j we will assume
the following basic assumptions.
H(j)1 j : (0, T ) × R −→ R is a function, such
that
(i) for every ζ ∈ R, the function t −→ j(t, ζ) is
measurable;
(ii) for almost all t ∈ (0, T ), the function ζ 7−→
j(t, ζ) is locally Lipschitz with Lp′((0, T ))+-
Lipschitz constant;
(iii) for every M > 0, there exists âM ∈
L1((0, T ))+, such that for almost all t ∈ (0, T ),
all |ζ| 6 M and all u∗ ∈ ∂j(t, ζ), we have

|u∗| 6 âM (t);

Besides, we will assume also resonance con-
ditions of various type: Landesman-Lazer-type,
Tang-type or some other known in the literature.
Under all these hypothesis we will show several
existence results for problem (1).
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Abstract: We consider nonlinear elliptic problems driven by the p-Laplacian
with a nonsmooth potential depending on a parameter λ > 0. The main re-
sult guarantees the existence of two positive, two negative and a nodal (sign-
changing) solution for the studied problem whenever λ belongs to a small inter-
val (0, λ∗) and p ≥ 2. We do not impose any symmetry hypothesis on the non-
linear potential. The constant-sign solutions are obtained by using variational
techniques based on nonsmooth critical point theory (minimization argument,
Mountain Pass theorem, and a Brezis-Nirenberg type result for C1-minimizers),
while the nodal solution is constructed by an upper-lower solutions argument
combined with the Zorn lemma and a nonsmooth second deformation theorem.
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Let Ω be an open bounded domain in Rn, with

boundary Γ, assumed to be sufficiently smooth.

The aim of the paper is to study the second or-

der hyperbolic semilinear mixed problem with

Dirichlet boundary condition:

xtt(t, y) − ∆x(t, y) + f(t, y, x(t, y)) = 0

x(0, y) = x0(y), xt(0, y) = x1(y), y ∈ Ω

x(t, y) = u(t, y), (t, y) ∈ Σ = (0, T ) × Γ.
(1)

We study existence of solutions to (1) over a

finite interval [0, T ], depending on smoothness of

the data. We exlude blowing up in finite time of

solutions to (1) imposing hypothesis Gw3, which

relates some interaction between growth of f and

length of time T.The importance of the problem

with control on the boundary appears in optimal

control theory see e.g. [1].

We study (1) by variational method, i.e. we

shall consider (1) as the Euler—Lagrange equa-

tion of the functional:

Jw (x) =

∫ T

0
{1

2

∥

∥Λ−1∇x (t, ·)∥∥2

H−1(Ω)

−1

2

∥

∥Λ−1xt (t, ·)∥∥2

H−1(Ω)
}dt (2)

+

∫ T

0

∫

Ω
F (t, y, x (t, y)) dydt

− 〈

x (T, ·) ,Λ−1x1 (·)〉
L2(Ω)

where Fx = f , defined on some subspace of

functions of the space C([0, T ];H−1(Ω)).

Our purpose is to investigate (1) by studying

critical points of functional (2). To this effect

we apply a new duality approach which is based

on ideas developed in [2]. Our aim is to find a

nonlinear subspace Xw of C([0, T ]; H−1(Ω)) and

study (2) just only on Xw. The main difficulty

in our approach is just the construction of the set

Xw.

Let Lw=
{

g : g ∈ L1(0, T ; H−1(Ω))
}

and let

x0 ∈ L2(Ω), x1 ∈ H−1(Ω) and u ∈ L2(Σ)

Uw =
{

x : x ∈ C([0, T ]; L2(Ω)),

∂x

∂t
∈ C([0, T ]; H−1(Ω)), xtt − ∆x ∈ Lw,

x(0, ·) = x0(·), xt(0, ·) = x1(·),
x(t, y) = u(t, y), (t, y) ∈ Σ = (0, T ) × Γ} ,

Uw1 = C([0, T ]; L2(Ω)),

Uw2 = C([0, T ]; H−1(Ω)).

We know: ∆ : H1
0 (Ω) → H−1(Ω), ∆ = Λ2

where Λ : H1
0 (Ω) → L2(Ω).

We assume the following hypotheses:

Gw1 there exists a function zw ∈ Uw1 such
that Fx (zw) ∈ Lw; (Fx (h) = Fx (·, ·, h(·, ·))).

Gw2 F is differentiable with respect to the
third variable in R and for almost all (t, y) ∈

(0, T ) × Ω Fx(t, y, ·) is continuous in R.

Let Iw =

[

−TBw sup
t∈(0,T )

‖zw(t, ·)‖L2(Ω) ,

TBw sup
t∈(0,T )

‖zw(t, ·)‖L2(Ω)

]

.

We define the set X
w

=
{

x ∈ Uw : ‖x(t, ·)‖L2(Ω) ∈ Iw, t ∈ (0, T )
}

.

Gw3 Fx(t, y, 0) �= 0, for a.e. (t, y) ∈
(0, T )×Ω; (t, y) → F (t, y, x(t, y)) is integrable
on (0, T ) × Ω for x ∈ X

w and

sup
x∈X

w
‖Fx (t, ·, x(t, ·))‖H−1(Ω) (3)

≤ sup
t∈(0,T )

‖zw(t, ·)‖L2(Ω) , t ∈ (0, T ),
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Gw4 Fx(·, ·, x(·, ·)) ∈ Lw, Fx(·, ·, x(·, ·)) ∈
L2(Σ), for x ∈ X

w
, F (t, y, x) ≥ a(t, y)x +

b(t, y), for some a, b ∈ L1((0, T ) × Ω), x ∈ R.

The dual functional reads

Jw
D (p, q) = −

∫ T

0

∫

Ω
F ∗(t, y, Λ−1(pt (T − t, y)

+div q (t, y)))dydt (4)

−1

2

∫ T

0

∥

∥Λ−1q (t, ·)∥∥2

H−1(Ω)
dt

+
1

2

∫ T

0

∥

∥Λ−1p (T − t, ·)∥∥2

H−1(Ω)
dt

+
〈

x0 (·) , Λ−1p (T, ·)〉
L2(Ω)

−
∫

Σ

〈

u (t, y) ,Λ−1q (t, y) ν(y)
〉

dydt

where, for a.e. t ∈ [0, T ], pt (T − t, ·) + div

q (t, ·) is an element of H−1(Ω), ν is outer nor-

mal to Ω and F ∗ is Fenchel conjugate to F .

The main results of the paper are the follow-

ing existence theorem.

Theorem 1. There is x ∈ Xw, that
infx∈Xw Jw (x) = Jw (x). Assume that the func-
tional x → ∫ T

0

∫

Ω F (t, y, x (t, y))dydt is subdif-
ferentiable (in the sense of convex analysis) at
the point x̄ ∈ Uw. Then there is (p, q) ∈ UD

such that Jw
D (p, q) = infx∈Xw Jw (x) = Jw (x)

and the following system holds, for t ∈ [0, T ],

Λ−1xt (t, ·) = Λ−1p (T − t, ·) , Λ−1∇x (t, ·) =

Λ−1q (t, ·) , Λ−1 (−pt (T − t, ·) − div q (t, ·)) =

−Λ−1Fx (t, ·, x (t, ·)) .

and stability

Theorem 2. Let {un},
{

x0
n

}

,
{

x1
n

}

given
sequences in L2(Σ), L2(Ω), H−1(Ω) respec-
tively, converging to ū, x̄0, x̄1 in L2(Σ), L2(Ω),

H−1(Ω) respectively. Then there is a subse-
quence of {xn} - solutions to (1) corresponding
to {un},

{

x0
n

}

,
{

x1
n

}

, which we denote again by
{xn} weakly convergent in L2(0, T, L2(Ω)) to an
element x̄ ∈ Uw being the solution to (1) corre-
sponding to ū, x̄0, x̄1.
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1. INTRODUCTION

Since 1980, a considerable attention of applied
mathematicians has been devoted to unilateral
contact problems with Coulomb friction, cf. [2]
and the references therein. Concerning the static
case, our comprehension has reached a fairly sat-
isfactory level. In [1], the authors have developed
a numerical approach to a class of optimization
problems, where one computes optimal shape of
a 2D elastic body in contact with a rigid obsta-
cle which obeys the Coulomb friction law. The
problem has been formulated as a mathematical
program with equilibrium constraints (MPEC)
and solved via the so called implicit program-
ming approach (ImP), cf. [5]. The technique
from [1] cannot be, however, extended to the
3D case in a straightforward way. The reason
is the nonpolyhedral nature of the subdifferen-
tial map of the Euclidean norm in Rn, whenever
n ≥ 2. Whereas the stability and sensitivity anal-
ysis of variational inequalities/generalized equa-
tions over polyhedral constraint sets has been de-
veloped quite deeply so far, much less is known
about the nonpolyhedral case. This holds in par-
ticular for the generalized equation (GE) mod-
eling the investigated 3D contact problem. Fur-
ther, also the numerical solution of this GE with
a fixed shape of the body (which is the state
problem in our MPEC) is substantially more de-
manding. The main aim of this contribution is
to extend the ImP technique of [1] to the 3D
case, which requires to discretize this MPEC by
finite elements, to construct a fast and precise
solver for the state problem and, by using tools
of sensitivity analysis, to compute a ”subgradi-
ent” information, needed in the used nonsmooth
optimization method.

2. NUMERICAL APPROACH

Our workhorse in sensitivity analysis is the gen-
eralized differential calculus of B. Mordukhovich
([4]) which is applied to the solved (discretized)
MPEC along the lines of [3]. The main difficulty
arises thereby in the treatment of the generalized
equation

0 ∈ Aττ (x)uτ + Aτν(x)uν − lτ (x)
+ Q̃(uτ , λ),

0 = Aντ (x)uτ + Aνν(x)uν − lν(x)
0 ∈ uν + x + NRp

+
(λ),

(1)
defining the discretized state problem. In this
model we have to do only with nodes laying
on the contact boundary which shape is sub-
ject to optimization. The state variable y =
(uτ , uν , λ) ∈ R2p × Rp × Rp

+, where p is the
number of nodes, uτ is the vector of tangent dis-
placements, uν is the vector of normal displace-
ments and λ is the multiplier associated with the
nonpenetrability constraint

uν + x ≥ 0. (2)

In (1), (2) the control x ∈ Rp specifies the shape
of the contact boundary. Aττ , Aτν , Aντ and Aνν

are blocks of the appropriate restriction of the
stiffness matrix which depend on x in a continu-
ously differentiable way. This holds true also for
the vectors lτ , lν reflecting the action of external
forces. The multifunction Q̃ in the first line of
(1) is given by

Q̃(uτ , λ) = λ • ∂j(uτ ), j(uτ ) = F
p∑

i=1

‖ui
τ‖,

where ui
τ is the tangential displacement of the ith

node, ‖ · ‖ is the Euclidean norm in R2,F > 0

202



is the friction coefficient and ” • ” denotes the
Hadamard product.

The shape optimization problem is defined as
follows:

minimize f(x, y)
subject to

y solves the GE (1)
x ∈ ω,

(3)

where f is the objective and ω is the set of admis-
sible controls. Since (1) defines a single-valued
and locally Lipschitz map S assigning x the cor-
responding state variable y, problem (3) amounts
to the nonsmooth program

minimize Θ(x) := f(x, S(x))
subject to

x ∈ ω.

(4)

The step from (3) to (4) is the core of ImP. To
solve (4) numerically, one needs to be able to
compute at each x ∈ ω the corresponding state
variable y = S(x) and one arbitrary vector ξ

from the Clarke subdifferential of Θ. In our ap-
proach this is done by solving the (regular) ad-
joint generalized equation.

0 ∈ ∇yf(x, y) + (∇yF (x, y))T v +
D̂∗Q(y,−F (x, y))(v)

(5)
in variable v, where y = S(x) and F, Q de-
note the single-valued and the multi-valued part
in (1), respectively. D̂∗Q is the regular coderiva-
tive which is replaced sometimes by the limiting
coderivative D∗Q, cf.[3]. Having computed a
solution v of (5), we use the formula

ξ = ∇xf(x, y) + (∇xF (x, y))T v

to arrive at the desired subgradient. As nons-
mooth optimization solver, we use the classical
bundle-trust algorithm from (6). We provide nu-
merical results of several test examples to illus-
trate the properties of the proposed approach.

3. CONCLUSION

The investigated optimization problem belongs to
the hardest MPECs ever solved. This concerns
both the applied tools from variational analysis as
well as numerical complexity and dimensional-
ity. In the numerical treatment some other alter-
natives are available and deserve a proper testing.
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1. Introduction

Let 0 ≤ N+ ≤ N. Consider the boundary
value problem

div [Ai (x)∇zi (x)]− ci (x) zi (x) =

=
∂F

∂zi
(x, z (x) , u (x)) , 1 ≤ i ≤ N+,

div [Ai (x)∇zi (x)]− ci (x) zi (x) =

= −∂F

∂zi
(x, z (x) , u (x)) , N+ < i ≤ N,

z1 (x) = . . . = zN (x) = 0 for x ∈ ∂Ω,

in the variational setting.
The system is defined in an open set Ω ⊆

Rn, n ≥ 1, that ensures the compact embed-
ding of the Sobolev space H1

0 (Ω) into L2 (Ω) .

A sufficient condition of the compactness is
the equality

lim
|x|→+∞

λn (Ω ∩B (x, 1)) = 0,

where λn denotes the Lebesgue measure and
B (x, 1) is the unit ball centered at x; see [2].

The functions F = F (x, z, u) : Ω × RN ×
K 7−→ R, c1, . . . , cN : Ω 7−→ R and the ma-
trix mappings A1, . . . , AN are assumed to be
known.

The parameter u is an element of the set

U
p
r, K := {u ∈ Lp (Ω)m : ‖u‖Lp ≤ r,

u (x) ∈ K for a.e. x ∈ Ω}

with the chosen measurable set K ⊆ Rm and
numbers r > 0 and p ∈ [1, +∞). The set
U

p
r, K can be interpreted as the set of admissi-

ble controls.

If N+ = N , the system takes on the form
div [Ai (x)∇zi (x)]− ci (x) zi (x) =

=
∂F

∂zi
(x, z (x) , u (x)) , 1 ≤ i ≤ N,

z1 (x) = . . . = zN (x) = 0 for x ∈ ∂Ω.

A similar reduction happens when N+ = 0.

The paper concerns weak solutions to the
system: the existence, the continuous depen-
dence on a parameter, and the optimality
with respect to a cost functional. The solu-
tions of the system are examined through the
associated functional of action

Fu (z) :=
1
2

N+∑
i=1

‖zi‖2
i −

N∑
i=N++1

‖zi‖2
i



+
∫
Ω

F (x, z (x) , u (x)) dx, (1)

where ‖·‖i , 1 ≤ i ≤ N, are the H1
0 (Ω)-norms

related to the system:

‖v‖2
i :=

∫
Ω

Ai (x)∇v (x) · ∇v (x) dx

+
∫
Ω

ci (x) |v (x)|2 dx

for each v ∈ H1
0 (Ω) . The critical points of

the functional and the weak solutions of the
system are the same, which follows from the
assumptions made about the system. Among
other things, the function F is supposed to
be of Carathéodory type and satisfy certain
growth conditions, so that functional (1) is
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well defined and Gâteaux-differentiable:

〈DFu (z) , h〉 :=
N+∑
i=1

(zi, hi)i −
N∑

i=N++1

(zi, hi)i

+
∫
Ω

∂F

∂z
(x, z (x) , u (x)) · h (x) dx

for each z, h ∈ H1
0 (Ω)N .

2. Main results

First comes a theorem on the existence of
weak solutions to the system; the proof uses
Ky Fan’s minimax theorem [4] or, for the re-
duced system, the coercivity argument. The
set of weak solutions turns out to be compact
in the Sobolev space.

Second, the author addresses the con-
tinuous dependence of weak solutions on
the parameter u. The results involve the
strong Painlevé-Kuratowski convergence of
sets on the side of solutions and the three
topologies—strong, of convergence in mea-
sure, and weak—on the side of parameters.
It is crucial here to use the compactness of
the embedding H1

0 (Ω) ↪→ L2 (Ω) .

The paper uses the following definition of
the Painlevé-Kuratowski convergence. If X

is a metric space and
{
Ak

}+∞
k=1

⊆ 2X , then
the set of all cluster points of all sequences{
ak

}+∞
k=1

with ak ∈ Ak, k = 1, 2, ..., is said to
be the upper limit of the sequence

{
Ak

}
.

Next, the author deals with the optimality
of solutions to the system when it is affine in
the parameter. The optimality is understood
as the minimization of the cost functional

J (u, z) :=
∫
Ω

Φ (x, z (x) ,∇z (x) , u (x)) dx.

Under suitable assumptions it is sequen-
tially lower semicontinuous in the weak-strong
topology of Lp (Ω)m × H1

0 (Ω)N . This fact
makes it possible to prove the existence of an
optimizer.
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1. INTRODUCTION

A sizable amount of work has been done on the
control of stochastic systems that are described
by   stochastic   differential   equations   with   a
Brownian motion and a drift term that contains
the state and the control.  Relatively little work
has   been   done   for   the   control   of   stochastic
systems where the Brownian motion is replaced
by a fractional Brownian motion with the Hurst
parameter that is allowed to assume some value
from an open interval of possible values.  

2. MAIN TOPIC

A   stochastic   control   problem   is   formulated
where   the   stochastic   system   is   a   stochastic
differential   equation   containing   a   fractional
Brownian motion and a nonlinear drift term that
contains the state  and the control.    Since it   is
undesirable   to   require   the   smoothness   of   the
control on the state, it is typically necessary to
verify  only   a  weak   solution  of   the   stochastic
system.

For   the   Hurst   parameter   of   the   fractional
Brownian  motion  in   the   interval  (0,  ½),  weak
solutions   of   the   stochastic   systems   are   given
with only some growth conditions on the drift.
The   weak   solutions   are   obtained   by   a
transformation of   the  measure  for  a  fractional
Brownian motion by absolute continuity and the
corresponding  Radon­Nikodym derivatives  are
given explicitly.  With a convexity condition on
the drifts of the stochastic equations, there is a
convexity   of   the   corresponding   Radon­
Nikodym   derivatives.     For   a   bounded,
continuous   cost   function   the   existence   of   an
optimal control is verified.
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In this paper we propose and study a continuous time stochastic model of optimal allocation for a defined 
contribution pension fund with a minimum guarantee. Usually, portfolio selection models for pension 
funds maximize the expected utility from final wealth over a finite horizon (the retirement time), whereas 
our target is to maximize the expected utility from current wealth over an infinite horizon since we adopt 
the point of view of the fund manager. In our model the dynamics of wealth takes directly into account the 
flows of contributions and benefits and the level of wealth is constrained to stay above a “solvency level”. 
The fund manager can invest in a riskless asset and in a risky asset but borrowing and short selling are 
prohibited. We concentrate the analysis on the effect of the solvency constraint, analyzing in particular 
what happens when the fund wealth reaches the allowed minimum value represented by the solvency 
level. 

The model is naturally formulated as an optimal stochastic control problem and is treated by the dynamic 
programming approach. We show that the value function of the problem is a regular solution of the 
associated Hamilton-Jacobi-Bellman equation. Then we apply verification techniques to get the optimal 
allocation strategy in feedback form and to study its properties. We finally give a special example with 
explicit solution. 
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School of Mathematics, Georgia Institute of Technology, Atlantla, GA 30332, U.S.A., swiech@math.gatech.edu

Keywords: Hamilton-Jacobi-Bellman equations, viscosity solutions, large deviations

1. Introduction

We will discuss how recent results on Hamilton-

Jacobi-Bellman (HJB) equations in Hilbert

spaces can be used to provide an easy way to

establish large deviation principle for a class of

stochastic PDE with small noise intensities. The

key ingredients in this procedure are viscosity so-

lutions and an infinite dimensional version of the

method of half-relaxed limits for HJB equations

to obtain the existence of the so called Laplace

limit for the large deviation problem at single

times. The approach uses a lot of ideas recently

developed by Feng and Kurtz in their work on

large deviations [1].

2. Large deviations for stochastic

PDE

We will study large deviation principle for solu-

tions of stochastic PDE of the form




dXn(s) = (−AXn(s) + b(s,Xn(s))ds

+ 1
√

n
Q

1

2 dW (s) s > t,

Xn(t) = x ∈ H,

where A is a linear, densely defined maximal

monotone operator in a real, separable Hilbert

space H , Q is a bounded, nonnegative, self-

adjoint operator of trace class in H , and W is

a cylindrical Wiener process in H . The operator

A and the function b must satisfy some addi-

tional conditions. The goal is to show how re-

sults on HJB equations can be used to obtain that

the sequence {Xn} satisfies the large deviation

principle in C([t,+∞);H−1), where H−1 is the

completion of H with respect to some weaker

topology. The procedure we propose is the fol-

lowing. We first establish that the sequence of

processes {Xn(T )} satisfies large deviation prin-

ciple in H for every T > t and then adapt the

methods of [1] to show that the large deviation

principle holds in the path space. To get the

large deviation principle at a single time T one

has to prove that the sequence {Xn(T )} is expo-

nentially tight and that for every f ∈ Cb(H−1)

the Laplace limit limn→∞ un(t, x) exists, where

un(t, x) = −
1

n
log IE[e−nf(Xn(T ))].

Exponential tightness is obtained by showing ex-

ponential moment estinmates for Xn.

3. HJB equations and the existence

of the Laplace limit

We use here recent results on relaxed limits for

HJB equations [2]. These results allow to pass to

very weak limits with solutions of HJB equations

without any apriori estimates. Adapting them to

the current situation we can show that the func-

tions un are the unique bounded viscosity solu-

tions of equations



(un)t + 1

2n
tr(QD2un) − 1

2
‖Q

1

2 Dun‖
2

+〈−Ax + b(t, x), Dun〉 = 0,

un(T, x) = f(x) in (0, T ) × H,
(1)

and that comparison holds for bounded viscos-

ity solutions the above equations for n ≥ 1 and

n = +∞. Finally the functions un converge

to the unique viscosity solution u of (1) with

n = +∞, which is the limiting first order HJB

equation. This yields the existence of the Laplace

limit u(t, x). Moreover the limiting HJB equa-

tion can also be used to express the limit as

the value function of an optimal control prob-

lem and thus give a representation for the rate
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function. Further, mostly stochastic arguments,

establish the large deviation principle for the se-

quence {Xn} in the path space.

Similar results can be obtained for problems

with multiplicative noise using slightly more

complicated techniques.
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In my talk I am going to present a stochas-

tic process modelling gene expression in eukary-

otes. This phenomenon is modeled by means

of piecewise-deterministic processes. We show

that distributions of the process satisfy a (Fokker-

Planck–type) system of partial differential equa-

tions:

∂f0

∂t
+

∂

∂x1
(−x1f0) + r

∂

∂x2
((x1 − x2)f0) =

q1f1 − q0f0,

∂f1

∂t
+

∂

∂x1
((1−x1)f1)+ r

∂

∂x2
((x1 −x2)f1) =

q0f0 − q1f1.

Then, we construct a c0 Markov semigroup in L1

space corresponding to this system. The main re-

sult is asymptotic stability of the involved semi-

group in the set of densities. The strategy of the

proof of this result is as follows. First we show

that the transition function of the related stochas-

tic process has a kernel (integral) part. Then we

find a set E on which the density of the kernel

part of the transition function is positive. Next

we show that the set E is an “attractor”. Then we

apply results concerning asymptotic behavior of

partially integral Markov semigroups discussed

in (2). We show that the semigroup satisfies the

“Foguel alternative”, i.e. it is either asymptoti-

cally stable or “sweeping”. Since the attractor E

is a compact set, we obtain that the semigroup is

asymptotically stable.

My talk is based on the paper (1). A sim-

ilar technique was applied to study asymptotic

behavior of a large class of transport equations.

The paper (3) can be consulted for a survey of

many results on this subject.
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1. Introduction

Linear control theory was apparently initially ap-

plied to the modelling of the reserve funds for a

property/casualty insurance company by Martin-

Löf ((4)). Even at that time an intensive devel-

opment of computer simulation models of the in-

surance industry had been initiated. Most of the

current large scale models concentrate on finan-

cial modelling and on testing deterministic sce-

narios. Nonetheless, as it is documented in (2)

on workmen’s compensation insurance, stochas-

tic simulation models are required for the evalu-

ation of the uncertainty in the claims’ reserves.

Therefore it is important to consider this facet of

insurance models and to devote research to their

mathematical aspects. It has been noted that the

scope of the computational risk theory methods

is wider than was expected when some approxi-

mations to probability distributions, that were a

substantial part of risk theory until the 1980’s,

are employed.

2. Main Topics

A discrete time, linear, stochastic control system

is constructed to model the risk reserves for an

insurance company. The model has the autore-

gressive form. A control is used to regulate the

risk reserve. The sequence of controls is deter-

mined by two approximations, the normal power

approximation of order two and a log normal ap-

proximation. These approximations use the first

three moments which incorporate the skewness

of the distributions that is important for these

problems. An example of automobile insurance

is considered to compare the two approximations

for the stationary control law. It is shown that the

two approximations are given stationary controls

that closely agree.
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[4] Anders Martin-Löf (1983): Premium control in
an insurance system, an approach using linear
control theory, Scand. Actuar. (1) 1 - 27.

211



LIMITING DISTRIBUTIONS FOR MINIMUM RELATIVE
ENTROPY CALIBRATION

 Lukasz Kruk
Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warsaw, Poland. Email:
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1. MRE CALIBRATION

Model calibration is an important part of Ap-
plied Mathematical Finance. An asset pricing
model is calibrated if it reproduces the current
market prices of certain specified benchmark in-
struments.

In this talk we examine some features of the
minimum relative entropy (MRE) calibration al-
gorithm. Its idea is to find the probability mea-
sure which prices correctly a given set of bench-
mark instruments and minimizes the Kullback-
Leibler entropy distance to a given prior distri-
bution, corresponding to the modeller’s a priori
information or beliefs. The MRE method was ap-
plied to one-period models in (Buchen and Kelly,
1996; Gulko, 1998) and to multiperiod models
in (Platen and Rebolledo, 1996; Avellaneda et.
al, 1997; Avellaneda, 1998). In the latter case,
lattice methods for nonlinear parabolic equations
were applied for computational purposes.

2. WEIGHTED MONTE CARLO

In (Avellaneda et. al, 2000), a MRE method for
calibrating Monte Carlo simulations of stochastic
processes was introduced. Starting from a given
model of market dynamics, the algorithm cor-
rects price misspecifications by assigning prob-
ability weights to the simulated paths. These
weights are chosen by minimizing the Kullback-
Leibler entropy distance of the posterior measure
to the empirical measure. Let us mention that
this algorithm has already been implemented by
some investment banks.

3. LIMITING DISTRIBUTIONS

A natural question which arises is stability of the
MRE method under perturbations of the prior

measure. This seems to be particularly impor-
tant for the Monte Carlo calibration (and, in fact,
other numerical methods), where we work with
a simulated approximation to the prior distribu-
tion rather than the prior itself. In this context,
a stability result characterizes the limiting distri-
bution which is approximated by the calibrated
measures as the number of simulated paths in-
creases and the time step decreases to zero.

Following (Kruk, 2004), we show that the
MRE calibration of probability distributions on
a separable metric space to a (fixed) finite set
of moment constraints is stable, i.e., continuous
in the weak topology. This means that if a se-
quence of priors Pn converges weakly to P , then
Qn, the calibrated measures under Pn, converge
weakly to Q which calibrates P to the same con-
straints. We also characterize the limiting distri-
butions approached (in the variation distance) by
the measures calibrating the same prior to an in-
creasing number of option price constraints. Fi-
nally, we explain the limiting properties of the
MRE Monte Carlo calibration algorithm.
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In a financial market, consisting in a non-risky
asset and some risky assets, people are interested
to study the minimal initial capital needed in or-
der to super-replicate a given contingent claim,
under gamma constraints.

Many authors have studied this problem in
different cases and with different constraints: for
example, see [7, 8], for problems in dimension
1, [4] for problems in dimension 2, and [6] for
problems in a general dimension d.

In the literature, the super-replication price
is carachterized as the viscosity solution of an
HJB-equation with terminal and boundary con-
ditions. In a particular case, the dual formulation
of the super-replication problem leads to a stan-
dard form of optimal stochastic control problem
[4].

In this paper we study numerically an HJB-
equation coming from the super-replication prob-
lem in dimension 2. We discretize the HJB
equation using the Generalized Finite Differ-
ences scheme [2, 3], then we study existence and
uniqueness of the discrete solution. Finally we
prove the convergence of the numerical solution
to the viscosity solution. In particular, we are in-
terested on the HJB equation which comes from
the two dimensional dual problem introduced in
[4]:

ϑ(t, x, y) = sup
(ρ,ξ)∈U

E
[
g

(
Xρ,ξ

t,x,y(T )
)]

, (1)

where (ρ, ξ) are valued in [−1, 1] × (0,∞), the
process (Xρ,ξ

t,x,y, Y
ρ,ξ
t,y ) is a 2-dimensional positive

process, and g is a payoff function. The main
difficulty of the above problem is due to the non-
boundness of the control set, this fact implies that
the Hamiltonian associated to (1) is not bounded,
and numerical approximation for such a problem
becomes more complicate.

In the literature, problems with unbounded
control have been studied by many authors (for
example, [1, 5]). In all these cases, the authors
decide to truncate the set of controls to make it
bounded. This truncation simplifies the numer-
ical analysis of the problem. However, there is
no theoretical result justifying this truncation.

In this paper we do not truncate the set of con-
trols, because we have a particular form of our
HJB equation which leads us to avoid the diffi-
culty of unbounded control. In fact, our HJB
equation can be reformulated in the following
way

Λ−(J(t, x, y,Dϑ(t, x, y), D2ϑ(t, x, y))) = 0,

where J is a symetric matrix differential operator
associated to the Hamiltonian, and where Λ−(J)
means the smallest eigenvalue of the matrix op-
erator J . J does not depend on the control, but
when we look for the first time at this equation,
it seems that it is very difficult to treat. From
standard computations on algebra, we rewrite the
smallest eigenvalue as follows:

Λ−(J) = min
‖α‖=1

αT Jα,

where α ∈ R2, and the HJB equation becomes:

min
α2

1+α2
2=1

αT Jα = 0,

where this time α is the control and it is bounded.
Then we have transformed our problem into a
bounded control problem, and now the numerical
analysis is possible.

We consider the discretization of the HJB
equation, and recall the main properties of the
Generalized Finite Differences Scheme and we
prove the consistency of this scheme. Moreover,
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we prove existence and uniqueness of a bounded
discrete solution, and finally we prove the
convergence of the numerical approximation.
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1. INTRODUCTION

This contribution will review some of the work

on the development of adaptive shooting meth-

ods for the solution of optimal control problems

carried out in our research group in recent years.

The basic feature of the shooting method is an

adaptive choice of the control vector parameter-

ization in a shooting type of solution strategy.

The following class of multi-stage dynamic opti-

mization problems is considered:

min
(uk(t),pk ,tk)k=1,...,S

S
∑

k=1

Φ(tk, x(tk), pk)

s. t. Mk ẋk(t) = fk(t, xk(t), uk(t), pk) ,

x1(t0) = x0(p1) ∈ R
nxk ,

xk(tk) = Bk xk−1(tk) ,

gk(t, xk(t), uk(t), pk) ≤ 0 ,

hk(tk, xk(tk), pk) ≤ 0 ,

uk(t) ∈ Uk, pk ∈ Pk,

for tk−1 < t ≤ tk, k = 1, . . . , S.

The dynamic optimization problem comprises S

stages, each with possibly different differential-

algebraic equations of index less than or equal to

one.

2. ADAPTION

The control variables are adaptively discretized

by multi-scale basis functions to resolve local de-

tail with an appropriate number of parameters. In

detail, the basis functions are wavelets generated

from the Haar basis or the hat basis, respectively.

At the beginning of the adaption procedure, an

optimization problem with a small number of ba-

sis functions is solved. Depending on the wavelet

coefficients of the optimal solution, some basis

functions are deleted and a number of additional

basis functions of the next resolution level are

added. Details of the adaption algorithm and nu-

merical case studies are given by Schlegel et al.

[8].

3. STRUCTURE DETECTION

Furthermore, for single-stage problems (S = 1)

the control switching structure of the solution is

automatically detected during the refinement pro-

cess of the adaptation of the control vector pa-

rameterization which gives insight into the solu-

tion features facilitating the interpretation of the

result. The such detected structure is exploited to

reparameterize the single-stage into a multi-stage

problem with a close to minimal number of con-

trol vector parameters (Schlegel and Marquardt

[6, 5]).

4. SENSITIVITIES

First and second order derivatives are computed

by novel and highly efficient numerical algo-

rithms exploiting forward as well as backward

mode differentiation. Schlegel et al. [7] provide

an efficient numerical algorithm based on the ex-

trapolated linear-implicit Euler’s method for the

computation of first order sensitivities. Han-

nemann and Marquardt [1] modify the second-

order adjoint sensitivity analysis (Haug and Ehle

[3]) to efficiently compute the Hessian of the

Lagrangian for path-constrained optimal control

problems in shooting algorithms.
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5. ONLINE APPLICATIONS

Kadam and Marquardt [4] introduce a two-level

strategy for the dynamic real-time optimization

of industrial processes. A parametric sensitivity-

based technique is used to calculate optimal first-

order updates to a nominal reference solution.

The technique does not assume that the active

constraint set remains the same after changes in

uncertain parameters.

The structure detection algorithm (cf. section

3) is adapted for nonlinear model predictive con-

trol (Hartwich et al. [2]). The achieved reduction

in terms of degrees of freedom in the concerned

nonlinear program decreases the computational

time.

6. CONCLUSIONS

Our numerical method conceptually links single-

shooting and multiple type shooting on the one

hand as well as direct and indirect methods on

the other. The robustness and performance of the

algorithms will be illustrated by different kinds of

examples from chemical engineering of different

complexity. The implementation has been proven

to be very robust and highly efficient for large-

scale optimal control problems with up to 15 000

differential-algebraic equations with a number of

control variables and many inequality path and

endpoint constraints. Some extensions of the al-

gorithm to cover real-time applications in non-

linear model-predictive and neighboring extremal

control will be briefly discussed together with il-

lustrating examples.
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We present a new full space exact Hessian
SQP algorithm for large scale dynamic optimiza-
tion that makes mainly use of two ingredients:

• We start by a process simulator (the adaptive
DAE solver DAESOL-II [1]) that is able to
generate adjoint sensitivities by the principle
of internal numerical differentiation. Thus, a
gradient computation is available at the cost
of about five process simulations.

• Second, we work in the framework of Bock
and Plitt’s direct multiple shooting method [2]
by introducing intermediate but constrained
”node” variables into the optimization prob-
lem. It is a well known technique for reduc-
ing nonlinearity and increasing robustness of
the optimization procedure, in particular for
boundary value problems e.g. with end point
quality constraints.

By a combination of both ingredients, we are
able to derive a full space exact hessian SQP
method that iterates in the very large space of
all node variables, yet needs to evaluate only the
same amount of derivatives as would be needed
in a single shooting approach. This is similar
to Schloeder’s trick [4] which was however only
applicable to least squares cost functions and not
yet combined with adjoint techniques.

By a smart programming trick, the algorithm
can easily be derived by ”lifting” a standard sin-
gle shooting SQP method, thus avoiding the te-
dious programming work usually avoided with
new variants of direct multiple shooting.

We consider here the following type of non-
linear optimization problem

min
u

F (u) = 0

s.t. H(u) ≥ 0.

This problem is then lifted by introducing inter-
mediate node values x and corresponding con-
straints G to a problem of type

min
u,x

F (u, x) = 0

s.t. G(u, x) = 0

H(u, x) ≥ 0.

We can then efficiently calculate the quantities
needed for the SQP method by evaluating
directional derivatives only with respect to the
original degrees of freedom u, and after solving
a quadratic problem in ∆u we need just another
directional derivative to expand this QP solution
to a step in the full variable space.

The algorithm is advantageous in case of large
process models with few degrees of freedom. We
present also an extension to online optimization
in nonlinear model predictive control. Here we
use the ideas of real-time iterations and initial
value embedding as presented in [3]. We extend
the latter idea to a more general parameter em-
bedding. We consider the lifted online optimal
control problem as dependent on some process
parameters p

min
u,x

F (u, p, x) = 0

s.t. G(u, p, x) = 0

H(u, p, x) ≥ 0,
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which could include the current process state.
Then we embed these parameters in our problem
by adding new nodes p̄ and the trivial constraint
Ḡ = p̄− p to the optimization problem. We end
up with

min
u,x̃

F (u, p, x̃) = 0

s.t. G̃(u, p, x̃) = 0

H(u, p, x̃) ≥ 0,

where x̃ = (x, p̄) and G̃ = (G, Ḡ). This allows
us a smoother transition between two successive
optimization problems, while the linearity of the
constraints ensure that they are fulfilled after
one SQP iteration.

Finally we demonstrate the performance of
our approach at examples from chemical engi-
neering.
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[4] J.P. Schlöder. Numerische Methoden zur Behand-
lung hochdimensionaler Aufgaben der Parame-
teridentifizierung, volume 187 of Bonner Math-
ematische Schriften. Universität Bonn, Bonn,
1988.

219



OPTIMISATION PROBLEMS IN ADVANCED OPERATING MODES
OF CONTINUOUS CHROMATOGRAPHY

Malte Kaspereit

Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg,
Germany, e-mail: kaspereit@mpi-magdeburg.mpg.de

Keywords: Simulated moving bed chromatography, Periodic operation, Process combinations, Reactive
separations

1. BACKGROUND

Chemical processes most generally consist of

a reaction step (synthesis) and a subsequent reso-

lution of reactants and products (separation). The

separation step can be very difficult (and expen-

sive), in particular in the production of valuable

pharmaceuticals and fine chemicals. In this con-

text, chromatographic processes are an important

option.
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Fig. 1. Process schemes for discontinuous batch chro-

matography (left) and the continuous simulated mov-

ing bed (SMB) process (right).

Chromatography is performed using columns

containing a stationary phase. The figure shows

two general process options – discontinuous

batch chromatography (single column, periodic

injection of small feed amounts; left), and Simu-

lated Moving Bed (SMB) chromatography (peri-

odic switching of multiple columns, continuous

feed; right). Due to its superior economic perfor-

mance, the SMB process is receiving more and

more attention.

2. DESIGN PROBLEM

The design task in chromatographic processes

is characterised by the need to minimise an eco-

nomically motivated objective. However, typ-

ically a multi-objective optimisation problem

arises, since different aspects like the productiv-

ity (i.e., the throughput or space-time-yield of the

process), consumption of solvents, product con-

centration, and yield have to be considered. Op-

erating parameters that can be manipulated are

usually the flow rate(s) within the process, the

feed concentration or composition, and the dura-

tion of the different time intervals involved (e.g.,

for feed injection or product collection). Gener-

ally, the desired purity of the products is formu-

lated as non-linear constraints.

Mathematical models of chromatographic

processes are computationally expensive, since

they typically involve a set of non-linear partial

differential equations that require numerical so-

lution schemes, because the PDEs are coupled

by the involved thermodynamic equilibria. Oc-

curring phenomena like shock fronts often neces-

sitate a fine spatial discretisation (up to several

thousand grid points per column). Furthermore,

the process includes discrete events; in particular

when considering new operating modes for such

processes.

Due to the computational efforts related

this, optimisations of ”standard” SMB processes

could be performed only recently. Different

strategies have been proposed; for example, ge-

netic algorithms (Zhang et al., 2002), sequential

quadratic programming (SQP) (Kaspereit et al.,

2005), a two-level approach (Minceva and Ro-

drigues, 2005), and the use of feedback control

(Schramm et al., 2003).
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3. ADVANCED PROCESS

CONFIGURATIONS AND NEW

OPTIMISATION PROBLEMS

Besides standard SMB configurations, cur-

rently different advanced operating modes are

subject to investigations. These allow to fur-

ther increase the economic performance of SMB

processes and to broaden the range of applica-

tions. Examples for such operating concepts in-

clude:

• combinations of SMB and complemen-

tary separation processes (including recycle

streams),

• additional periodic variation of parameters

(e.g., column configuration, flow rates, feed

concentration),

• introduction of gradients with respect to sol-

vent strength or temperature,

• implementation of chemical reactions within

SMB processes.

However, optimisation of such processes re-

mains a challenge and only few results have

been published. Mainly, processes with periodic

variations (see above) have been considered

using genetic algorithms (Zhang et al., 2004).

More recently, non-linear optimisation with

full discretisation was applied successfully to

SMB processes with periodic variation of the

column configuration and flow rates (Kawajiri

and Biegler, 2006).

In the presentation, on overview will be given

on optimisation problems related to (continu-

ous) chromatographic processes. After an in-

troductory review of fundamental principles and

modelling approaches, recent developments with

respect to advanced operating modes for SMB

processes and optimisation problems will be ex-

plained. A main example to be discussed is the

flow-sheet integration of SMB chromatography

with selective crystallisation to separate phar-

maceutically relevant isomers (Kaspereit, 2006).

Related to that, the optimal design of SMB

processes with arbitrary purity requirements will

be explained (Kaspereit et al., 2007). Further ex-

amples include SMB processes with cyclic mod-

ulation of operating parameters, and integrated

processes where chromatography and chemical

reactions are performed within the same appara-

tus.
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1. Abstract

The past decade has seen a variety of oper-

ating modifications for Simulated Moving Bed

(SMB) processes, including Three-Zone, VARI-

COL, and PowerFeed. In recent studies, we have

shown that these can all be embedded within a

superstructure optimization problem with time-

variant flow rates. Moreover, the resulting dy-

namic optimization problem has yielded a num-

ber of interesting and useful insights on novel

SMB operations. In many cases, optimal solu-

tions have a “bang-bang” character, i.e., at any

instant of time, the feed, desorbent, extract and

raffinate streams appear at only one location. Re-

markably, this occurs even though the optimiza-

tion is performed without the introduction of bi-

nary decision variables. In this study we an-

alyze and present the conditions where “bang-

bang” solutions are optimal. We also demon-

strate cases where these conditions do not hold

and where “bang-bang” solutions are subopti-

mal. To demonstrate that these properties are

independent of the column model and solution

strategy, we present both “bang-bang” and “non-

bang-bang” cases for two different column mod-

els.

2. Summary

SMB chromatography is a realization of continu-

ous chromatographic separation that is applied in

many industrial applications including the sugar,

food, petrochemical, and pharmaceutical indus-

tries. As shown in Figure 1, an SMB unit con-

sists of multiple columns connected to each other

in a cycle and divided into four zones by two

inlet streams, feed (F) and desorbent (D), and

two outlet streams, extract (E) and raffinate (R).

The continuous, counter-current operation is sim-

ulated by switching the four streams in the direc-

tion of the liquid flow in the columns.

In standard SMB operation, the four stream

flows are kept constant over a switching in-

terval and treated as operating parameters; the

switching interval, or step time, is also an op-

timization parameter. On the other hand, Pow-

erFeed operation allows the stream flows to be

time variant. Moreover, VARICOL systems per-

form asynchronous valve switching, where the

four inlet/outlet ports are switched independently,

not simultaneously (1). Finally, the Three-Zone

SMB has a circulation loop that is cut open,

and the recycle stream from Zone III to Zone

I is withdrawn as the raffinate stream. Three-

Zone SMB, and Three-Zone SMB with purging

have also been investigated in recent experimen-

tal studies (2; 3).

The dynamics of this process are character-

ized by Cyclic Steady State (CSS) operation,

where the same concentration profiles are gen-

erated repeatedly in every cycle. As a result, the

Simulated Moving Bed (SMB) chromatographic

separation process contains time–dependent dis-

crete decisions (4; 5; 6), and related optimiza-

tion problems are challenging as they combine

periodic nonlinear optimal control problems and

partial differential equations (PDE) with time–

dependent discrete decisions. In previous stud-

ies (8; 7) we proposed optimization strategies

to find optimal operating schemes with a gen-

eral superstructure approach. In this study the

PDAE model is discretized in both time and

space domains, and the resulting large scale non-

linear optimization problem is solved using two

approaches, an interior-point solver for a fully

discretized, direct transcription approach and a

multiple shooting approach that uses a large-scale

SQP strategy. Moreover, in recent studies (8; 6)
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we observed that solutions from the superstruc-

ture optimization naturally led to a “bang-bang”

policy. In general, the term bang-bang solution

refers to control trajectories that are at their re-

spective bounds over the considered time hori-

zon. Here, we also require the satisfaction of

a special ordered set constraint, i.e., at each in-

stant of time each stream appears only at one

location within a cycle. Remarkably, the deci-

sion as to whether a specific flow is located at a

given port or not need not be characterized with a

binary variable. Instead, a continuous relaxation

in space still satisfies the “bang-bang” conditions.

On the other hand, more complex non-bang-bang

solutions were also observed in (7) and these re-

veal further insight into advanced SMB designs.

This talk reconciles these two policies and

provides a justification for the occurence of

“bang-bang” features in optimal SMB designs.

Such solutions are normally expected to require

binary decision variables and mixed integer op-

timal control formulations. However, we show

that under certain conditions such solutions de-

rive from continuous variable optimization for-

mulations as well, and (computationally more ex-

pensive) mixed integer formulations are not re-

quired.

In this talk, we describe the general super-

structure model for SMB optimization. Follow-

ing this, the superstructure formulation is ab-

stracted to a mixed integer optimal control prob-

lem (MIOCP) and properties of the MIOCP are

presented. In particular, we present properties

under which “bang-bang” solutions are optimal

as well as conditions where these properties are

violated. We then consider two different SMB

different column models and demonstrate that

these results are independent of particular de-

tails of these models. This is supplemented with

a variety of computational results that demon-

strate these properties and exhibit exceptions to

“bang-bang” policies when these properties are

not satisfied.
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Estimating model parameters from experi-
mental data is crucial to reliably simulate dy-
namic processes. In practical applications, how-
ever, it often appears that the experiments per-
formed to obtain necessary measurements are ex-
pensive, but nevertheless do not guarantee suffi-
cient identifiability. The optimization of one or
more dynamic experiments in order to maximize
the accuracy of the results of a parameter estima-
tion subject to cost and other technical inequality
constraints leads to very complex non-standard
optimal control problems: find control variables
ξ that minimize a function ϕ of a covariance ma-
trix

min
ξ

ϕ(C(x, p, ξ))

such that state variables x, parameters p and con-
trol variables ξ satisfy DAE model, control con-
straints

c1(ξ) ≥ 0 or = 0

and state constraints

c2(x, p, ξ) ≥ 0.

One of the difficulties is that the objective func-
tion is a function of a covariance matrix and
therefore already depends on a generalized in-
verse of the Jacobian of the underlying parame-
ter estimation problem. Another difficulty is that
the optimization results depend strongly on the
assumed values of parameters which are only
known to lie in a - possibly large - confidence
region. Hence, robust optimal experiments are
required that solve worst-case (min-max) opti-
mization problems

min
ξ∈Ω

max
‖Σ(p−p0)‖≤γ

ϕ(C(x, p, ξ)).

We suggest new efficient solution methods for
such problems. The methods have been ap-
plied successfully to real-world problems. The
methods allow to estimate reliably unknown pa-
rameters and to reduce significantly experimental
costs.

This is joint work with Hans Georg Bock, Ste-
fan Körkel and Johannes P. Schlöder.

REFERENCES

[1] Bauer, I., Bock, H. G., Körkel, S., Schlöder,
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1. Introduction

In recent years, continuous chromatographic

processes have been established as an effi-

cient separation technology in industry, espe-

cially when temperature sensitive components

or species with similar thermodynamic proper-

ties are involved. In SMB processes, a counter-

current movement of the liquid and of the

solid phase is achieved by periodically switch-

ing the inlet and the outlet ports in a closed-

loop of chromatographic columns. The inte-

gration of reaction and separation in one sin-

gle plant is a promising approach to overcome

chemical or thermodynamic equilibria and to in-

crease process efficiency. Reactive chromato-

graphic SMB processes in which the columns

are packed with both catalyst and adsorbent have

been proposed and demonstrated successfully.

However, a full integration often is not efficient

because the catalyst is not used in the separating

zones that clean the eluent and the adsorbent or

even counterproductive in the product purifica-

tion zones. By placing reactors between the sep-

aration columns at specific positions around the

feed port, a more efficient process, the Hashimoto

SMB Hashimoto et al. (1983) process, can be es-

tablished.

In this paper, the simulated and the experi-

mental performances of optimizing control of the

Hashimoto SMB process are presented. A non-

linear predictive controller for the Hashimoto

SMB process is established that computes opti-

mal control variables (flow rates and the switch-

ing time) while the purity requirements of the

product streams and the conversion of the feed

to the valuable product are considered as con-

straints. The concept is extended to the case

of high product purities and applied to a pilot

plant of the biochemical and chemical engineer-

ing department at the Universität Dortmund. As

an oscillatory behavior of the controller was ob-

served in some situations, an additional term was

added to the cost function that prevents the break-

through of impurities via the recycle loop.

2. Process Model

The Hashimoto SMB process is an integrated

reaction and separation process. Both, reaction

and chromatographic separation are performed in

separate units such that optimal conditions for

reaction and for separation can be chosen in-

dependently and the reactors can be constantly

placed at positions where the forward reaction of

the equilibrium limited reaction system is pro-

moted. A relative movement of the adsorbent is

implemented by switching the ports in the direc-

tion of the liquid flow. The reactors, however,

remain at their positions relative to the ports.

The columns are described accurately by the gen-

Q
De ExQ

switching of
separators

liquid flow

zone II zone IIIzone I

QFe

recycle

Fig. 1. Hashimoto three-zone configuration (reactors:

black, separators: white)

eral rate model. The resulting partial differential
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equations are transformed into ordinary differen-

tial equations by a finite element discretization

of the bulk phase and orthogonal collocation of

the solid phase.

3. Predictive control strategy

3.1. Formulation of the optimization problem

The goal of the optimization is to minimize an

economic objective (rather than e. g. a cost func-

tion involving a tracking error) while important

plant specifications (purity and recovery require-

ments, pump limitations, process dynamics) are

formulated as constraints. The objective function

of the optimization consists of the eluent con-

sumption over the horizon as the main objective

of the optimizer and a regularization term that

penalizes changes of the degrees of freedom and

leads to a smooth behavior of the controlled sys-

tem such that aggressive changes of the control

variables only take place when needed to obtain

a feasible operation (e.g. in the presence of a

set point change). An additional penalty term

is added to the objective in order to prevent a

breakthrough of impurities via the recycle line.

4. Results

4.1. Simulation

For the simulation, a considerable plant/model

mismatch is considered. The controller is

switched on at period 80. The purity constraint

is initially set to 85%, increased to 90% at pe-

riod 184, further increased to 95% at period 368

and finally set to 99% at period 648. The con-

troller manages to keep the product purity and

the recovery at the specified minimal values for

the full simulation run and to reduce the solvent

consumption, see Figure 2.

4.2. Experiment

The desired purity was set to 80% and increased

to 82% for the last two intervals of operation

while the recovery set point was set to 70%. Due

to the computation time of around 30 min, the

flow rates and the switching period calculated by

the optimizer are based on an error feedback that

is delayed by one switching cycle.
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Fig. 2. Simulation: Manipulated and controlled vari-

ables
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Fig. 3. Experiment: Manipulated and controlled vari-

ables

The recovery constraint was already met at

the first interval since the plant had been in op-

eration before. The controller was switched on in

the second interval. A recycle pump failure oc-

curred in the 3rd interval that reduced the liquid

flow in all separation zones considerably and led

to a drop of the purity. The controller managed

to keep the purity above the desired 80% with the

exception of interval 10 where a slight violation

occurred, see Figure 3. The solvent consump-

tion is reduced in a smooth fashion. Overall, the

performance was satisfactory.
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1. INTRODUCTION 

 
In this contribution, we consider an extension of 
the quasi-sequential approach [Hong06] using 
an interior-point strategy for efficient solution of 
large-scale dynamic optimization problems with 
path constraints on state variables. The quasi-
sequential approach is suitable for 
accomplishing this task. It utilizes advantages of 
both simultaneous approaches (where a 
complete discretization for both states and 
controls is adopted) and sequential approaches 
(where a model integration step is used for 
eliminating the states and equalities).  
Furthermore, the elimination of equality 
constraints simplifies the line-search problem 
considerably and therefore larger steps can be 
taken towards the optimum. 
 
 

2. ACTIV-SET VERSUS INTERIOR-POINT 
 

Within the quasi-sequential approach an active-
set strategy has been used until now. It is well-
known that this strategy will be inefficient for 
problems with a large number of inequality 
constraints. In the current work the active-set 
strategy is replaced by an interior-point method. 
Due to the handling of inequality constraints 

with barrier terms the eventual problem to be 
solved consists of merely an objective function. 
We chose a primal-dual interior-point approach 
[Waechter06] which presents excellent 
convergence properties and computational 
performances. This modification leads to a 
considerable reduction of computational costs in 
situations where the number of active 
constraints is high.  

 
 

3. APPLICATION 
 

The interior-point quasi-sequential approach is 
applied to the dynamic optimization of the 
Tennessee Eastman Process. The Tennessee 
Eastman process [Downs93] has been used in 
many studies with different aspects of process 
systems engineering. Due to its characteristics 
of being open-loop instable as well as highly 
nonlinear, it is even impossible to initialize the 
dynamic optimization problem [Jockenhövel04]. 
A two-step procedure is proposed to overcome 
this difficulty. The results from the interior-
point quasi-sequential approach will be 
compared with those from the active-set quasi-
sequential approach.  
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1. Introduction

High-level modeling languages are receiving in-

creased industrial and academic interest within

several domains, such as chemical engineering,

thermo-fluid systems and automotive systems.

One such modeling language is Modelica, [1].

Modelica is an open language, specifically tar-

geted at multi-domain modeling and model re-

use. Key features of Modelica include object

oriented modeling, declarative equation model-

ing, a component model enabling acausal con-

nections of submodels, as well as support for

hybrid/discrete behaviour. These features have

proven very applicable to large-scale modeling

problems in various fields.

While there exist very efficient software tools

for simulation of Modelica models, tool support

for static and dynamic optimization is generally

weak. Furthermore, specification of optimization

problems is not supported by Modelica. Since

Modelica models represent an increasingly im-

portant asset for many companies, it is of interest

to investigate how Modelica models can be used

also for optimization.

This contribution gives an overview of a

project targeted at i) defining an extension of

Modelica, Optimica, which enables high-level

formulation of optimization problems, ii) devel-

oping prototype tools for translating a Model-

ica model and a complementary Optimica de-

scription into a representation suited for numer-

ical algorithms, and iii) performing case studies

demonstrating the potential of the concept.

The project integrates dynamical modeling

and optimization with computer science and nu-

merical algorithms. One of the main benefits of

the suggested approach is that the high-level de-

scriptions are automatically translated into an in-

termediate representation by the compiler front-

end. This intermediate representation can then

be further translated to interface with different

numerical algorithms. The user is therefore re-

lieved from the burden of managing the often

cumbersome API:s of numerical algorithms. The

flexibility of the architecture also enable the user

to select the algorithm most suitable for the prob-

lem at hand.

2. Optimica

A key issue is the definition of syntax and seman-

tics of the Modelica extension, Optimica. Opti-

mica should provide the user with language con-

structs that enables formulation of a wide range

of optimization problems, such as parameter es-

timation, optimal control and state estimation

based on Modelica models.

At the core of Optimica are the basic op-

timization elements such as cost functions and

constraints. It is also possible to specify bounds

on variables in the Modelica model as well as

to mark variables and parameters as optimiza-

tion quantities, i.e., to express what to optimize

over. While this type of information represents

a canonical optimization formulation, the user is

often required to supply additional information,

related to the numerical method which is used to

solve the problem. In this category we have e.g.,

specification of transcription method, discretiza-

tion of control variables and initial guesses. Op-

timica should also enable convenient specifica-

tion of these quantities.

3. Software Tools

In order to demonstrate the proposed concept,

prototype software tools are being developed.
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In essence, the task of the software is to read

the Modelica and Optimica source code and

then translate, automatically, the model and op-

timization descriptions into a format which can

be used by a numerical algorithm. The Mod-

elica/Optimica compiler is developed using the

Java-based compiler construction tool JastAdd,

[5]. For an overview of the computer science as-

pects of the compiler implementations, see [7].

Currently, the front-end of the Model-

ica/Optimica compiler supports a subset of Mod-

elica and a basic version of Optimica. In ad-

dition, a code-generation back-end for AMPL,

[3], has been developed. AMPL is a language

intended for formulation of algebraic optimiza-

tion problems. Accordingly, the compiler per-

forms automatic transcription of the original

continuous-time problem into an algebraic for-

mulation which can be encoded in AMPL. In

the transcription procedure, the problem is dis-

cretized by means of a simultaneous optimiza-

tion approach based on collocation over finite el-

ements, see e.g., [2] for an overview. Finally, the

automatically generated AMPL description may

be executed and solved by a numerical NLP al-

gorithm. For this purpose we have used IPOPT,

[6].

4. A Case Study

The prototype tools have been used to formulate

and solve a start-up problem for a plate reactor

system. The plate reactor is conceptually a tubu-

lar reactor located inside a heat exchanger, and

offers excellent flexibility, since it is reconfig-

urable and allows multiple injection points for

chemicals, separate cooling/heating zones and

easy mounting of temperature sensors. In this

case study, an exothermic reaction, A + B → C ,

was assumed. The reactor was fed with a fluid

with a specified concentration of the reactant A.

The reactant B was injected at two points along

the reactor.

The primary objective of the start-up se-

quence was to transfer the state of the reactor

from an operating point where no reaction takes

place, to the desired point of operation. This

problem is challenging, since the dynamics of

the system is fast and unstable in in some oper-

ating conditions. In addition, the temperature in

the reactor must be kept below a safety limit, in

order not to damage the hardware.

Optimal control and state profiles were cal-

culated off-line and then used as feedforward

and feedback signals in a PID-based mid-ranging

control system.

The experiences from using the Model-

ica/Optimica compiler in this project are promis-

ing, in that the tools enable the user to focus on

formulation of the problem instead of, which is

common, encoding of the problem. For more

details on this case study, see [4].

5. Summary

This contribution gives an overview of a project

targeted at extending the Modelica language to

also support optimization. The goals of the

project include specification of Optimica, devel-

opment of prototype software tools and case stud-

ies. The results are promising, and encourage

further development.
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1. INTRODUCTION

After a single dose of radiation, important

changes mainly due to cell death are expected to

occur in the oxygenation and nutritional state of

surviving cells. In particular, a transient increase

of oxygenation (reoxygenation) may occur. Since

cell radiosensitivity increases with oxygen con-

centration, reoxygenation is expected to induce

a greater sensitivity of the tumour to a subse-

quent irradiation. Such a resensitization could

counterbalance the sparing effect of dose split-

ting on cell survival caused by damage repair and

cell repopulation. In previous papers (Bertuzzi

et.al, 2003), (Bertuzzi et.al, 2004), we proposed a

model for the response of tumour cords (cylindri-

cal arrangements of tumour cells around tumour

blood vessels) to single-dose treatments. That

model has been extended to describe the response

to impulsive irradiation (Bertuzzi et.al, 2007), in-

corporating the repair/misrepair process of the

DNA double strand breaks (DSB) produced by

radiation (Hlatky et.al, 2003). The model has

been used to study the time course of reoxygena-

tion and its role in the response to split doses.

2. MODEL EQUATIONS

We model the tumour vasculature as a regu-

lar array of parallel and identical vessels, as in

the Krogh model of microcirculation. Thus, the

tumour tissue can be partitioned into identical

cylinders of tissue around central vessels (tumour

cords). Let r be the radial distance, r0 the vessel

radius, and B the cord radius. Necrotic regions

are supposed to be absent. Changes along the

axial coordinate are disregarded. We denote by

νP , νQ, ν†, νN the volume fractions of proliferat-

ing (P ) cells, quiescent (Q) cells, lethally dam-

aged cells, and dead cells respectively. u(r, t)

denotes the (radially directed) velocity of the cel-

lular component, and σ(r, t) the oxygen concen-

tration. We will assume νP +νQ+ν†+νN = ν?,

ν? constant. From the mass conservation, we can

write

∂νP

∂t
+∇· (νP u) = χνP +γνQ−λνP −mPνP ,

(1)
∂νQ

∂t
+∇·(νQ u) = −γνQ +λνP −mQνQ , (2)

∂ν†

∂t
+∇· (ν† u) = mP νP +mQνQ −µν† , (3)

∂νN

∂t
+ ∇ · (νN u) = µν† − µNνN . (4)

In Eqs. (1)-(4) χ is the proliferation rate, and

γ(σ) and λ(σ) are, respectively, the rates for the

transitions Q→P and P→Q. We suppose that

γ and λ are nondecreasing and, respectively, non-

increasing functions of σ. mP (r, t) and mQ(r, t)

are rates representing the production of lethal

damage due to the misrepair process, µ is the

death rate of lethally damaged cells. µN is the

degradation rate of dead cells into liquid. Since

ν? is constant, we obtain

ν? 1

r

∂

∂r
(ru) = χνP − µN (ν?

− νP − νQ − ν†) ,

(5)

that yields the cell velocity when completed with

the boundary condition u(r0, t) = 0.

Concerning the equation for σ, we assume

∆σ = f(σ)(νP + νQ + ν†) , (6)

σ(r0, t) = σb ,
∂σ

∂r

∣

∣

∣

∣

r=B(t)

= 0 ,

where f(σ) denotes the ratio between the con-

sumption rate per unit volume of live cells and
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the diffusion coefficient, and σb is the oxygen

blood concentration. The cord boundary B(t) is

given by

Ḃ = u(B(t), t) , B(0) = B0 , (7)

until σ(B(t), t) > σN , σN being the threshold

under which necrosis occurs. According to the

model in (Hlatky et.al, 2003), we have

mP =
1

2
kX2

P , mQ =
1

2
kX2

Q ,

where XP (r, t) and XQ(r, t) denote the mean

number of DSBs in a P and, respectively, Q cell

at the position r at time t. These quantities sat-

isfy the following equations

∂XP

∂t
+ u

∂XP

∂r
= −ωXP − 2kX2

P , (8)

∂XQ

∂t
+ u

∂XQ

∂r
= −ωXQ − 2kX2

Q , (9)

where ω and k are the rate constants for the repair

and the binary misrepair process.

Because we are considering only impulsive ir-

radiation, the direct induction of lethal damages,

as well as the production of repairable DSBs,

will be represented in the initial conditions. If a

sequence of impulsive irradiations is given with

dose Di at time ti, i=1, 2, ..., t1 =0, we have the

following initial conditions for Eqs. (1)-(3),(8)-

(9):

νP (r, t+i ) = exp[−αP (σ(r, t−i ))Di]νP (r, t−i ) ,

νQ(r, t+i ) = exp[−αQ(σ(r, t−i ))Di]νQ(r, t−i ) ,

ν†(r, t+i ) = (1−exp[−αP (σ(r, t−i ))Di])νP (r, t−i )

+(1−exp[−αQ(σ(r, t−i ))Di])νQ(r, t−i )+ν†(r, t−i ) ,

XP (r, t+i ) = δP (σ(r, t−i ))Di +XP (r, t−i ) ,

XQ(r, t+i ) = δQ(σ(r, t−i ))Di +XQ(r, t−i ) .

The dependence on the oxygen concentration of

the radiosensitivity is expressed in terms of the

parameters, α and β, of the standard linear-

quadratic model (Wouters and Brown, 1997)

αP (σ) = αP
Mψα(σ) , αQ(σ) = αQ

Mψα(σ) ,

βP (σ) = βP
Mψ

2
β(σ) , βQ(σ) = βQ

Mψ
2
β(σ) ,

where ψα(σ), ψβ(σ) are Michaelis-Menten func-

tions of σ. Since β = δ2k/(4ω), δP (σ) and

δQ(σ) are thus expressed by

δP ,Q(σ) =

√

4ω

k
βP,Q

M ψβ(σ) .

At t = 0−, we have νP (r, 0−) = νP0
(r),

νQ(r, 0−) = νQ0
(r), and all the other state vari-

ables are zero.

3. CONCLUSIONS

Numerical simulations of the model were able to

predict the cellular response to a single dose of

radiation and the time-course of reoxygenation.

We compared the single-dose response to the re-

sponse occurring when the dose is divided into

two equal fractions (split-dose response). It was

found that the reoxygenation reduces the sparing

effect of fractionation, the maximal reduction be-

ing achieved when the second dose is delivered at

the time of maximal reoxygenation. The predic-

tion of the reoxygenation time course might thus

be useful in determining the optimal time of dose

delivery. Moreover, the sparing effect appears

strongly influenced by the intervessel distance.

The comparison of the effects of split-dose de-

livery in the tumour and in the normal tissue was

also performed.
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1. ANGIOGENESIS, TUMORS AND ANTI-
ANGIOGENIC THERAPIES

Primary tumors and metastases require the 
formation of new blood vessels in order to grow 
beyond about 1 to 2 m m 3 . This process is 
sustained by different mechanisms: tumors may 
coopt existing vessels, may induce the 
formation of new vessels from pre-existing ones 
or may exploit endothelial precursors 
originating from the bone marrow. Vessel 
formation is regulated by a number of pro- and 
anti-angiogenic molecules, released by tumor 
cells. There is compelling evidence from 
experimental work, that inhibiting angiogenesis 
may induce tumor regression or sometimes cure. 
Targeting tumor vasculature, composed of 
genetically stable endothelial cells, has been 
regarded as a means to overcome acquired drug 
resistance. Angiogenesis inhibitors are 
commonly classified as direct inhibitors, acting 
on the endothelial cells and inhibiting their 
proliferation and migration or inducing their 
apoptosis, indirect inhibitors, blocking the 
production of angiogenic factors by malignant 
cells. Most angiogenesis inhibitors are 
cytostatic, inhibiting the formation of new blood 
vessels, but some direct inhibitors may result 
cytotoxic, inducing rapid destruction of existing 
blood vessels. Various anti-angiogenic drugs are
undergoing clinical evaluation, with conflicting 
outcomes despite some encouraging results. 

2. MATHEMATICAL MODELING ANTI-
ANGIOGENESIS THERAPIES

Modelling the interaction between tumor growth 
and the development of its vascular network, as 
well as the action of angiogenesis inhibitors, 
could help to plan effective anti-angiogenic 
therapies. Some mathematical models have been 
recently proposed (Hahnfeldt et al 1999, Agur et 
al 2004, d’Onofrio and Gandolfi 2004). Among 
the factors influencing the clinical effectiveness 
of angiogenesis inhibitors, the administration 
schedule appears to be particularly relevant. 
Anti-angiogenic therapy has always been 
proposed as uninterrupted, long term treatment, 
to obtain effective tumor growth control. 
Despite this concept has pervaded the clinical 
development of anti-angiogenic drugs, a deeper 
insight into the relationships between drug 
pharmacokinetics and anti-vascular activity 
could be useful to improve clinical results.

Hahnfeldt et al. (1999) proposed a simple 
mathematical model which describes the 
vascular phase of tumor growth assuming that it 
is strictly controlled by the dynamics of the 
vascular network, and that the vascular 
dynamics is the result of the opposite influence 
of pro-angiogenic and anti-angiogenic factors 
produced by the tumor itself. This model 
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provides a framework to portray the effects of 
anti-angiogenic therapies, and it was successful 
in fitting experimental data on the growth and 
response to different anti-angiogenic drugs of 
Lewis lung carcinomas implanted in mice. A 
mathematical analysis of that model was 
presented in (d’Onofrio and Gandolfi 2004), 
focusing on the tumor eradication, under 
regimens of continuous or periodic anti-
angiogenic therapy.

3. THE INTERPLAY BETWEEN 
MATHEMATICAL MODELS AND 

MEDICAL INFERENCES

In this work we illustrate some biological and 
clinical inferences derived from the analysis of 
the model by Hahnfeldt et al. (1999) and of 
variants and generalizations of it. In particular, 
we shall focus on the following topics: 

• Analytically, we shall derive conditions 
for the globally asymptotically stable 
eradication of the disease;

• Concerning the class of anti-angiogenic 
drugs that act by altering the 
proliferation related parameters of the 
vascular cells, we shall show that these 
drugs, even though can exert tumor 
control, are ineffective in leading to 
tumor eradication unless there is a 
sufficiently high rate of spontaneous 
loss of the tumor vasculature (d’Onofrio 
and gandolfi, 2006);

• Through numerical simulations, we 
shall compare the effect of a constant 
continuous infusion of a drug that 
induces vascular loss to the effect of a 
periodic, bolus-based, therapy. We shall 
investigate the role of drug elimination 
rate and dose fractionation, and show 
that different schedulings guaranteeing 
the same mean value of drug 
concentration may exhibit very different 
long-term responses according to their 
concentration versus time profile, with 
the profiles that approach the constant 
one being more effective (d’Onofrio et 
Al, 2006);

• We shall briefly study the problem of 
optimization of therapies (Swierniak et 
al., 2006)(Ledzewicz   and H. Schättler, 
2007);

• Finally, we shall show as some 
biological problems related to the anti-
angiogenic therapy may lead to more 
complex phenomena that may be 
modeled by differential equations with 
distributed delays. In turn, we shall see 

as this way of modeling might give 
some contribution to the improvement 
of the therapy (d’Onofrio, 2006).

4. CONCLUSIONS

Summarizing, in this work we shall show how 
classical biological and medical features may 
naturally be translated in classical topics of the 
qualitative theory of differential equations such 
as global stability, delay differential equations, 
singular perturbation methods, cooperative 
systems, periodic solutions, persistence theory 
and optimal control..
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1. Introduction

Traditionally most immunisation regimes have
been optimised in order to stimulate high levels
of antibody. This is because for many diseases
protection can be predominantly antibody medi-
ated. However this is not the case for all diseases,
for example cytotoxic immune responses are im-
portant for protection against intracellular bacte-
ria and viruses, as well as in the treatment of can-
cer. It is more difficult to optimise vaccination
regimes aimed at stimulating cytotoxic immune
responses since cytotoxic immune responses are
much more difficult to measure than antibody
titres. In particular, ex vivo measurements are
difficult, since these cells are present only at very
low levels and are often difficult to detect follow-
ing immunisation. Therefore, subjective mark-
ers for vaccine efficacy are often utilised. In the
case of therapeutic cancer vaccines, these mark-
ers may be such things as disease free survival
or time to disease progression. However as these
parameters do not provide an immediate read
out of the efficacy of the immunisation regime
they provide little help for optimising the therapy.
Therefore often the only option available for re-
searchers and clinicians is the ”Goldlilocks” ap-
proach to cancer vaccination: give not too much
of the vaccine, or to little and give it not too
often or too few times.

We present a new mathematical model of the
immune kinetics in response to tumor antigen.
The aim of this work is to model the T cell im-
mune response to a vaccine with the goal that
this can be used to aid in the optimisation of
vaccine induced prophylactic and therapeutic cel-
lular immune responses. The model is calibrated
using data from mouse experiments where it is
possible to directly measure cellular immune re-

sponses. Additionally in the mouse many pa-
rameters such as time to cell division, the rate of
cell division and of cell death after exposure to
antigen are known. Heuristic methods are then
applied to the model to suggest immunization
protocols that would produce the best cellular
immune response. We will discuss the ultimate
goals of the model, which are to understand the
impact of clinically controllable factors such as
antigen dose, the duration of antigen persistence,
the presence of immune potentiating agents and
the number and timing of any booster immuni-
sations. This is joint work with Dr. Sarah Hook,
University of Otago, Dunedin, New Zealand.

2. The Mathematical Model

The model consists of a system of delay differen-
tial equations, and is calibrated to experimental
data from murine experiments performed specif-
ically for the purpose of the development of the
mathematical model.

We model two T-cell populations in the
spleen: CD8+ T cells, denoted by the subscript
8, and CD4+ T cells, denoted by the subscript 4.
Each T cell population is further sub-divided into
four sub-populations: active proliferating cells,
Ap, highly apoptotic cells, Aa. normal active
cells, An, and memory cells, M . We also in-
clude two APC populations: the population in
the blood compartment, DB , and the population
in the spleen, D. The T-cell populations are all
in the spleen compartment. We assume that there
is an average synaptic connection time between
APC’s and immune cells, τ , required to proved
a co-stimulatory response. This introduces a de-
lay into the equations. The synaptic connection
time differs for naive and memory cells. Denot-
ing the proliferating, apoptotic, normal and mem-
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ory immune cell sub-popluations by Ap, Aa, An

and M , respectively, the model equations derived
from these assumptions are as follows (equations
2-5 are duplicated for CD8+ T-cells, giving 9
equations in all):

dD

dt
= µBSDB − δDD

dAp

dt
= ρ

D(t− τ)Ap(t− τ)
θ + D(t− τ)

− δAAp

+λD(t− τM )M(t− τM )− 1
T

Ap

dAa

dt
=

1
T

Ap − (r + α + δA)Aa −
1
∆

Aa

dAn

dt
=

1
∆

Aa − (r + δA)An

−
(

µ∗
SB +

∆µ

1 + D(t)/θshut

)
An

dM

dt
= r(Aa + An) + pM

(
1− M

k

)
3. Simulation Results

After the model is calibrated to the data, simula-
tions are run to validate its behavior. We see that
the simulations do, in fact, mimic experimentally
observed phenomena, as shown in the Figures 1,
2 and 3.
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Fig. 1. Different initial CD8+ levels do not affect the
timing of the peak, but they do affect the size of the
peak as well as the long term population sizes, (1)

4. Vaccination strategies

The size of the system and the introduction of de-
lays makes it difficult to analytically apply control
techniques to this problem. However, heuristic
methods can be used. We will conclude the talk
with a discussion of the results of the application
of these methods.
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Fig. 2. Antigen exposure affects the timing of the peak
response for CD8+ T Cells. These simulations reflect
the results discussed in (1)
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EXTENDED ABSTRACT 
 
During progression of tumor, molecular factors 
called activators (stimulators) and inhibitors 
(blockers) of angiogenesis are released by tumor 
to develop its own vascular network which 
enables its growth and in the next stage 
determines possibility of cancer metastasis. 
Since this network is necessary for tumor 
development, in late sixties of the last century a 
new anticancer therapy called antiangiogenic 
was proposed target of which was not directly 
the cancer cells but the new born vasculature 
(Folkman, 1971). Its main advantage is that it is 
resistant to the drug resistance (Kerbel., 1997).  
The complexity of the process of vascularization 
results in the complicated models applicable for 
simulation of the process but completely not 
useful in synthesis or even analysis of therapy 
protocols. The exception is a class of models 
proposed by Hahnfeldt et al. (1999) who 
suggested that the tumor growth with 
incorporated vascularization mechanism can be 
described by Gompertz type or logistic type 
equation with variable carrying capacity which 
defines the dynamics of the vascular network. 
D’Onofrio and Gandolfi (2004) proved that 
using sufficiently high doses of antiangiogenic 
drugs we are able to annihilate completely the 
vascular network of the tumor and indirectly 
eradicate the tumor itself. It can be reached not 
only using a constant dose of the drug but also 
by periodic therapy more reasonable from 
clinical point of view. Nevertheless since the 
results have an asymptotic character it means 

that the process of eradication is theoretically 
infinite and the same the patient once treated by 
the antiangiogenic therapy should remain under 
such control to the end of his life. To overcome 
this difficulty it has been proposed to optimize 
the therapy in finite horizon (Swierniak et al., 
2006). The optimization problem for yet another 
modification of Hahnfeldt model was solved by 
Ergun et al. (2003). Ledzewicz and Schattler 
(2005) analysed Ergun model and found that 
optimal trajectories contained  singular arcs. 
Recently they found similar properties for the 
original Hahnfeldt model. The goal of this 
presentation is to demonstrate that  reasonable 
modifications of optimal control problems 
related to all these models lead to optimal 
solutions which have no singular arcs. 
The main idea of Hannfeldt et al. (1999) is to 
treat the carrying capacity which constraints the 
tumor growth as a varying tumor volume 
sustainable by the vessels and roughly 
proportional to the vessel volume K. In the case 
of Gompertz type equation or logistic type 
equation it implies the following description of 
dynamics of tumor cells population N 
(respectively): 

,/ln/ KNNN β−=&  or  (1) )/1(/ KNNN −= α&

The dynamics of the growth of the vessel 
volume represented by its PDT depends on the 
stimulators of angiogenesis (SF), inhibitory 
factors secreted by tumor cells (IF) and natural 
mortality of the endothelial cells (MF): 
 PDT = f(MF, SF, IF) (2) 
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It may be assumed that the inverse of PDT is the 
sum of these three factors i.e.  
 1 / PDT = MF + SF + IF (3) 
The spontaneous loss of functional vasculature 
represented by MF is supposed to be negative 
constant, the stimulatory capacity of the tumor 
upon inducible vasculature represented by SF is 
found to grow at rate K  slower than the 
endogenous inhibition of previously generated 
vasculature represented by IF where: 

cb N

 b+c ~2/3 (4) 
From the other hand analysing a diffusion-
consumption equation for the concentration of 
stimulator or inhibitor inside and outside the 
tumor, Hahnfeld et al concluded that inhibitor 
will impact on target endothelial cells in the 
tumor in a way that grows ultimately as the area 
of the active surface between the tumor and the 
vascular network which in turn is proportional 
to the square of the tumor diameter. It leads to 
the conclusion that IF is proportional to the 
tumor volume in power 2/3 since volume is 
proportional to the cube of the diameter. The 
expression for K suggested in (Hahnfeldt et al., 
1999) has therefore the following form: 

  (5) )(// 3/2 μλγ +−= NKNKK&

μλγ ,,  being constant parameters. The 
modification by d’Onofrio and A. Gandolfi 
(2004) which also satisfies Hahnfeldt’s 
suggestions given by (4) assumes that the effect 
of SF and MF on the inverse of PDT is constant 
while the IF is proportional to the active surface 
of the area of tumor:  

  (6) 

     

)(/ 3/2 μλγ +−= NKK&

The reasonable design procedure is to formulate 
optimal control problem for the system given by 
the proposed model(s) and the control objective 
which adequately represents the primary goal of 
the therapy. We propose to optimize the 
protocol in the fixed finite time of therapy with 
the primary goal which is to find the control 
maximizing TCP (treatment cure probability) 
that leads to the following equivalent form of an 
optimal control problem: 

  (7) 

m

T

k

Utu

dttuTNJ
k

≤≤

Ξ≤= ∫
)(0

,)(),(
0

with known constraining constant parameters. 
The integral constraints imposed on control 
variable for antiangiogenic agent represents 
mostly the shortage in the availability of the 
agent and only in part the possible side effects 
of the drugs (not sufficiently recognized yet). 
Due to isoperimetric form of the problem it 
could be transformed into the problem with the 

integral part of the performance index instead of 
the integral constrain on the control: 

  (8) 
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In (Swierniak et al., 2006) we have proved that 
for model (6) the solution to the optimization 
problem leads to bang-bang controls and 
singular arcs are not present. In the case of the 
original Hahnfeldt we are able to prove that if 
the cancer population is modeled by logistic 
type growth than singular solutions are not 
optimal either. The problem with the Ergun 
model is slightly different. Since the 
antiangiogenic therapy is directed towards the 
vasculature rather than towards tumor itself the 
reasonable objective is to minimize the volume 
of the vascular network. If so the dynamics of 
the tumor may be omitted in the optimization 
problems and this implies once more the bang–
bang optimal solution of the optimization 
problems. 
The author was partly supported by internal 
grant of the Silesian University of Technology 
BK/Rau1/2007. 
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1. INTRODUCTION

Angiogenesis is one of the most important

processes in malignant tumours dynamics. It

is also recognised as a target for chemother-

apy. This possible role of angiogenesis was

discovered by Folkman in 1972 (Folkman

(1971)), however its implementation is di-

rectly connected with anti-angiogenic drugs,

which was discovered in nineties by O’Reilly

et al. (O’Reilly et.al (1994, 1997)). After

more than 30 years after the Folkman dis-

covery, we are able to understand this pro-

cess much better, compare e.g. Carmeliet

et.al (2000); Yangopoulos et.al (2000). In

the lack of nutrients, tumour cells secrete

growth factors, one of the best known is

VEGF (vascular endothelial growth factor),

which can stimulate endothelial cells EC

to proliferate, migrate and form new blood

vessels. However, the newly formed ves-

sels have highly unstable structure and its

stabilisation crucially depends on matura-

tion (coverage by pericytes) which is gov-

erned by another growth factor — PDGF

(platelet-derived growth factor) and the sys-

tem of angiopoietins Ang1 and Ang2 (com-

pare e.g. Holash et.al (1999)). Therefore, the

effective vessel density EVD (namely the to-

tal perfused vasculature) can exhibit an os-

cillatory behaviour.

The considered process is very com-

plicated and therefore, mathematical mod-

elling can bring a better understanding and

lead to better treatment protocols, compare

Arakelyan et.al (2002). The first mathemat-

ical model of angiogenesis was proposed by

Hahnfeldt et al. in Hahnfeldt et.al (1999). It

is described as a system of two ODEs (or-

dinary differential equations) based on the

Gompertz growth of tumour with carrying

capacity equal to endothelial cells volume.

This model was studied in d’Onofrio et.al

(2004) and it occurs that independently on

the parameters there exists exactly one glob-

ally stable positive equilibrium. On the basis

of the Hahnfeldt et al. model some optimal

protocols of anti-angiogenic treatment was

proposed, compare, e.g. Ergun et.al (2003);

Ledzewicz et.al (2005).

Due to its global stability, the Hahnfeldt et

al. model cannot reflect possible instability

of the blood vessel formation and structure

that is observed in the experiments, e.g. Ho-

lash et.al (1999); Gilead et.al (1999). In

Arakelyan et.al (2002) much more compli-

cated computer model was proposed to de-

scribed this dynamics. Next, in Agur et.al

(2004) the computer model from Arakelyan

et.al (2002) was simplified and described as

the system of three (or five) DDE’s (delay

differential equations) which evolves insta-

ble oscillations. This model was also anal-

ysed in Foryś et.al (2005) and compared

with the experimental data in Arakelyan et.al
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(2005). On the other hand, the Arakelyan

et al. model cannot exhibit the stable be-

haviour even in the case without delay, com-

pare Foryś et.al (2005).

Combining the ideas from Hahnfeldt et.al

(1999) and Agur et.al (2004) we propose

three-variable tumour angiogenesis model

with tumour carrying capacity depending on

vessel density, similarly to Hahnfeldt et.al

(1999). Our model differs from that pro-

posed in Agur et.al (2004) only in the first

equation, where carrying capacity was not

taken into account.

2. MODEL PRESENTATION

As in Agur et.al (2004); Foryś et.al (2005)

we consider three time-dependent variables:

tumour size N(t), amount of regulating pro-

teins P (t) and vessel volume. We de-

fine effective vessel density as E(t) =

V (t)/N(t). We assume that the tumour

growth is bounded, but the presence of the

vessels enlarge the carrying capacity. Never-

theless, the tumour cannot grow to infinity —

after tumour have grown to the proper size,

the metastasis process begin — this phenom-

ena is not described by this model. To model

behaviour described above, we assume that

the tumour growth is governed by the logis-

tic equation with carrying capacity depend-

ing on the effective vessel density. The pro-

duction of regulating proteins is decreasing

with increasing vessel density and it is pro-

portional to tumour size. We also consider

the natural decay of proteins with the rate

coefficient δ. The vessel creation is propor-

tional to the vessel volume with the coeffi-

cient depending on the amount of proteins.

Finally, we have a system of three ordinary

differential equations:


















Ṅ = αN

(

1 −
N

1 + f1(E)

)

Ṗ = f2(E)N − δP

V̇ = f3(P )V

(1)

where f1 is an increasing function with

f1(0) = 0 and f(+∞) = b1 > 0, f2 is

a decreasing convex function with f2(0) =

a2 > 0 and f(∞) = 0, f3 is an increasing

function with f3(0) = −a3 < 0, f(c3) = 0

and f3(∞) = b3.

Substituting V with E in the last equation

we obtain






















Ṅ = αN

(

1 −
N

1 + f1(E)

)

Ṗ = f2(E)N − δP

Ė =

(

f3(P ) − α

(

1 −
N

1 + f1(E)

))

E .

(2)

3. STEADY STATES

Looking for steady states, from the first equa-

tion we see at once that either N = 0 or

N = 1 + f1(E). Let consider the first

case. From the second equation we imme-

diately obtain that P = 0, which implies

E = 0. Thus the trivial solution (0, 0, 0)

is the steady state for the system (2). If

N = 1 = f1(E), from the third equation

we have either E = 0 or f3(P ) = 0. If

E = 0, from the second equation we obtain

P = a2/δ and N = 1 from the first one.

Thus, we got the steady state (1, a2/δ, 0). If

E 6= 0, then P = c3. Using N = 1 + f1(E)

we obtain f2(E)(1 + f1(E)) = δc3. De-

pending on the functions f1 and f2 there can

exist zero, one or more positive steady states

(N̄ , c3, Ē).

Thus, we have at least two steady states

A = (0, 0, 0) , B = (1, a2/δ, 0) ,
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Ci = (N̄i, c3, Ēi) .

The steady states Ci not necessarily exist.

In order to determine the stability, we cal-

culate the Jacobi matrix for the system (2).

It is easy to see that

M(A) =





α 0 0

a2 −δ 0

0 0 −a3 − α





and thus the point A is an unstable saddle

point.

For the point B we have





−α 0 αf ′
1(0)

a2 −δ f ′
2(0)

0 0 f3

(

a2

δ

)



 .

Thus, it is stable if a2 < c3δ and unstable for

a2 > c3δ. We may interpret it biologically

in the following way: the stability means that

the production of proteins is too small to

cause sufficiently fast creation of new ves-

sels. Thus, tumour cannot grow beyond size

1.

For the steady states Ci (if it exists) we

have

MC =







−α 0 αf ′
1(Ē)

f2(Ē) −δ f ′
2(Ē)N̄

αĒ
1+f1(Ē)

f ′
3(c3)Ē − αĒ

1+f1(Ē)
f ′
1(Ē)







Denoting β = Ē
1+f1(Ē)

, d1 = f ′
1(Ē) > 0,

−d2 = f ′
2(Ē) < 0, c2 = f2(Ē) > 0 and

d3 = f ′
3(c3) > 0 we have

MC =





−α 0 αd1

c2 −δ −d2N̄

αβ d2V̄ −αβd1





Calculating the characteristic polynomial we

obtain

w(λ) = λ3 + (α(1 + βd1) + δ)λ2+

+(αδ(1 + βd1) + d2d3N̄Ē)λ+

αd3Ē(d2N̄ − c2d1) .

We would like to determine conditions for

negativity of real parts of eigenvalues of

MC . We use Huth-Hurwitz criterion for the

polynomial w. We remind that for w(λ) =

λ3+a2λ
2+a1λ+a0, necessary and sufficient

condition for having all roots of polynomial

w on the left half-plane is: all coefficients

ai has to be positive and a1a2 − a0 > 0.

By simple but tedious calculations we may

check that a1a2 − a0 > 0. It is also easy to

see that all coefficients except a0 are posi-

tive. Therefore, the steady state Ci is sta-

ble if d2N̄ − c2d1 > 0 and unstable if

d2N̄ − c2d1 < 0. Notice, that for this steady

state N̄ = 1+f1(Ē). Using this equality we

obtain

d2N̄ − c2d1 =

−f ′
2(Ē)(1 + f1(Ē)) − f2(Ē)f ′

1(Ē) > 0.

Then

−f ′
2(Ē)(1 + f1(Ē)) > f2(Ē)f ′

1(Ē)

−
f ′
2(Ē)

f2(Ē)
>

f ′
1(Ē)

1 + f1(Ē)

−
(

ln f2(Ē)
)′

>
(

ln(1 + f1(Ē))
)′

(

ln f2(Ē)(1 + f1(Ē))
)′

< 0

Since logarithm is an increasing function,

this implies that the function g(E) =

f2(Ē)(1 + f1(Ē)) should be decreasing in

the neighbourhood of Ē. Notice, that the

steady state Ē is a solution to g(Ē) = c3δ.

Since g(0) > 0 and limE→∞ g(E) = 0 it is

easy to see, that the greatest steady state is

stable.
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The existence of steady state Ci. The pos-

itive steady state Ci exists if and only if the

function g(x) = f2(x)(1 + f1(x)) − δc3 has

a positive root. Notice, that g(0) = a2 − δc3

and g(+∞) = −δc3. Thus, if a2 > δc3,

then there exists at leas one positive root of

g(x) = 0. Therefore, there exists at least one

positive steady state C1. Notice, that in that

case, the steady state B is unstable.

Let differentiate the function g. We ob-

tain

g′(x) = f ′
2(x)(1 + f1(x)) + f2(x)f ′

1(x)

Notice, that if the function f1 increases slow

enough, then g′(x) < 0 and there exist at

most one steady state C1.

4. CONCLUSIONS

In the paper we have proposed the three-

variable angiogenesis model which improves

the Arakelyan et al. model such that the

positive steady state of the system is stable

which is impossible in the original model.

Our model differs from the original one only

in the first equation where we consider the

carrying capacity for tumour cells which de-

pends on the effective vessel density. The

idea of carrying capacity depending on it

comes from ?, however in our model the de-

pendence is not so simple as in the case of

Hahnfeldt et al. model.

We determined conditions under which

the unique positive steady state is stable. On

the other hand, there can exist more than

one positive steady state and in this case

at least one of them is unstable. Therefore,

such a case can reflect instability described

in Arakelyan et.al (2002); Agur et.al (2004).

We can also consider the system with delays,

as in Agur et.al (2004). Then, destabilisation

due to delays occur. Therefore, depending on

the parameters, the model proposed in this

paper can reflect both types of dynamic —

instability of newly formed vessels and sta-

bilisation of it.
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1. INTRODUCTION

The most important limiting factor for the

success of cancer chemotherapy treatments

lies in both intrinsic and acquired drug re-

sistance. As of today, the search for ther-

apy approaches that would avoid drug re-

sistance still is of a tantamount importance

in medicine and two such approaches that

are currently being pursued in their experi-

mental stages are immunotherapy and anti-

angiogenic treatments. While immunother-

apy tries to coax the body’s immune system

to take action against the cancerous growth,

tumor anti-angiogenesis aims at depriving a

tumor from developing the necessary blood

cells and capillaries that it needs for further

growth. Since the treatment does not target

cancer cells, but normal cells, no occurrence of

drug resistance has been reported in lab stud-

ies and for this reason tumor anti-angiogenesis

has been called a therapy resistant to resis-

tance which provides a new hope in treatment

of tumor type cancers (Kerbel, 1997).

2. MODELLING

There exist several mathematical models for

the evolution of tumor anti-angiogenesis as a

dynamical system with the one formulated by

Hahnfeldt, Panigrahy, Folkman and Hlatky in

(Hahnfeldt et al., 1999) probably being the

most prominent one. This model was bi-

ologically validated in lab experiments and

became the basis for several modifications

and simplifications (d’Onofrio and Gandolfi,

2004; Ergun et al., 2003) undertaken in an ef-

fort to both better understand the dynamical

properties of the underlying mechanisms and

to make the mathematical model easier and

more tractable for analysis. For example, a

dynamical systems analysis of the model by

Hahnfeldt et al. and of several modifications

(with more general growth models for the can-

cer volume and slightly different dynamics for

the evolution related to endothelial cells) is

given in the paper by d’Onofrio and Gan-

dolfi (d’Onofrio and Gandolfi, 2004); Ergun,

Camphausen and Wein (Ergun et al., 2003)

consider an optimal control problem for the

scheduling of anti-angiogenic inhibitors both

as monotherapy and in combination with ra-

diotherapy. While these models are variations

of the specific dynamics proposed by Hahn-

feldt et al. in (Hahnfeldt et al., 1999), in the

papers by Agur, Arakelyan, Daugulis and Gi-

nosar (Agur et al., 2004) and Forys, Kheifetz

and Kogan (Forys et al., 2005) more generally

dynamical properties of models for angiogen-

esis are investigated under minimal assump-

tions on the form of the growth functions de-

scribing the dynamics.

3. MATHEMATICAL

FORMULATION

Angiogenesis can be viewed as a complex bal-

ance of stimulatory and inhibitory mecha-

nisms regulated through micro-environmental

factors. In this talk, following (Hahnfeldt et

al., 1999), we will describe the basic principles
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of the underlying modelling which are sum-

marized in a two-dimensional dynamical sys-

tem with the primary tumor volume, p, and

the carrying capacity of the vasculature, q,

as variables. A growth function describes the

size of the tumor dependent on the carrying

capacity q and is chosen as Gompertzian in

the original model,

ṗ = −ξp ln

(

p

q

)

(1)

where ξ denotes a tumor growth parame-

ter. Other models using a different model for

the growth function for p are considered in

(d’Onofrio and Gandolfi, 2004) or (Forys et

al., 2005). The overall dynamics for the car-

rying capacity is a balance between stimula-

tion and inhibition and its basic structure is

of the form

q̇ = −µq + S(p, q) − I(p, q) − Guq (2)

where µq describes the loss of endothelial cells

due to natural causes (death etc.), I and S

denote endogenous inhibition and stimulation

terms, respectively, and Guq represents a loss

due to additional outside inhibition. The vari-

able u represents the control in the system

and corresponds to the angiogenic dose rate

while G is a constant that represents the anti-

angiogenic killing parameter.

4. OPTIMAL CONTROL

In our papers (Ledzewicz and Schättler, 2005,

2006, 2007) we have considered the optimal

control problem of how to administer a given

amount of inhibitors to achieve the “best pos-

sible” effect in the sense of minimizing the tu-

mor volume both for the model from (Hah-

nfeldt et al., 1999) and (Ergun et al., 2003).

Both optimal solutions contain a singular arc

as the center piece of their synthesis. But

this corresponds to giving specific time vary-

ing dosages and is not practical or even realiz-

able with the current status of medical tech-

nologies. In this talk we will compare these

optimal solutions with the intuitive and med-

ically commonly used strategy of giving all

available inhibitors as one dose initially. Our

previous analysis of optimal controls allows to

make quantitative judgements as to how good

these strategies are relative to the best possi-

ble tumor reduction that can be achieved with

a limited amount of inhibitors.

5. CONCLUSIONS

For the original model of Hahnfeldt et al.

(Hahnfeldt et al., 1999) the achievable tumor

reductions are very close to each other if the

tumor volume is small - in fact, in some re-

gions of the state space it is optimal to give all

available inhibitors in one dose initially - but

for larger values of the tumor volume, there is

a discernable difference in the reductions that

can be achieved by the optimal and subopti-

mal strategies.

REFERENCES

Z. Agur, L. Arakelyan, P. Daugulis and Y. Gi-
nosar, Hopf point analysis for angiogenesis mod-
els, Discrete and Continuous Dynamical Sys-
tems, Series B, 4, No. 1, (2004), pp. 29-38

A. d’Onofrio and A. Gandolfi, Tumour eradica-
tion by antiangiogenic therapy: analysis and ex-
tensions of the model by Hahnfeldt et al. (1999),
Mathematical Biosciences, 191, (2004), pp. 159-
184

A. Ergun, K. Camphausen and L.M. Wein, Op-
timal scheduling of radiotherapy and angiogenic
inhibitors, Bulletin of Mathematical Biology, 65,
(2003), pp. 407-424

U. Forys, Y. Keifetz and Y. Kogan, Critical-
point analysis for three-variable cancer angiogen-
esis models, Mathematical Biosciences and Engi-
neering, 2, no. 3, (2005), pp. 511-525

P. Hahnfeldt, D. Panigrahy, J. Folkman and L.
Hlatky, Tumor development under angiogenic
signaling: a dynamical theory of tumor growth,
treatment response, and postvascular dormancy,
Cancer Research, 59, (1999), pp. 4770-4775
R.S. Kerbel, A cancer therapy resistant to resis-
tance, Nature, 390, (1997), pp. 335-336
U. Ledzewicz and H. Schättler, A synthesis of
optimal controls for a model of tumor growth
under angiogenic inhibitors, Proceedings of the
44th IEEE Conference on Decision and Control,
Sevilla, Spain, December 2005, pp. 934-939

U. Ledzewicz and H. Schättler, Application of
optimal control to a system describing tumor
anti-angiogenesis, Proceedings of the 17th Inter-
national Symposium on Mathematical Theory of
Networks and Systems (MTNS), Kyoto, Japan,
July 2006, pp. 478-484
U. Ledzewicz and H. Schättler, Anti-Angiogenic
Therapy in Cancer Treatment as an Optimal
Control Problem, SIAM J. on Control and Opti-
mization, under review

247



CONTROL OF HIV AMONGST INJECTING DRUG USERS

David Greenhalgh(1) and Fraser Lewis(2)

(1) Department of Statistics and Modelling Science, University of Strathclyde, Livingstone Tower, 26
Richmond Street, Glasgow G1 1XH, UK,

(2) Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of
Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK.

Keywords: Human Immunodeficieny Virus (HIV), Acquired Immune Deficiency Syndrome (AIDS), Injecting
Drug Users, Control, Basic Reproductive Ratio, Deterministic Model, Stochastic Model.

1. INTRODUCTION

This talk is concerned with mathematical mod-

els for the control of HIV amongst injecting in-

travenous drug-users (IDUs), particularly nee-

dle exchange programs, HIV testing of IDUs

and improved cleaning practices. Our model is

based on the work of Kaplan and O’Keefe (1993)

who developed basic mathematical models for

the spread of HIV amongst IDUs using data from

Connecticut, New Haven, USA.

2. HOMOGENEOUS MODEL

We start off by outlining a basic existing homoge-

neous differential equation model for the spread

of HIV amongst IDUs incorporating these con-

trol strategies. We next describe an improvement

of the way in which HIV testing can be treated

in this model.

Our model assumes that the total number of

drug addicts and the total number of needles re-

main constant. If π1, π2 and β denote the preva-

lence of HIV amongst untested addicts, tested ad-

dicts and needles respectively at time t then the

differential equations which describe the spread

of the disease are:

dπ1

dt
= (1 − π1 − π2)λ1βα(1 − φ)

−(µ + δt + δ)π1;

dπ2

dt
= δtπ1 − (µ + δ)π2;

and

dβ

dt
= (1 − β)γ(π1λ1 + π2λ2)

−βλγ(1 − π1 − π2)(θ + φ − θφ)

−βτ.

Here λ1 is the sharing injection rate of addicts

who do not know that they are infected; λ2 is the

decreased sharing rate of addicts who know that

they are infected; α is the transmission probabil-

ity that when a single uninfected addict makes a

single injection with an infected needle the addict

is infected and φ is the probability that an addict

successfully cleans a needle before use. µ is the

per capita rate at which addicts leave the sharing,

injecting population for reasons other than devel-

oping AIDS; δt is the per capita HIV testing rate,

δ is the per capita rate at which HIV-infected ad-

dicts progress to AIDS; γ is the ratio of addicts

to needles and θ is the flushing probability that

when a single uninfected addict uses an infected

needle that needle is left uninfected after use.

For this improved model a key parameter is

the basic reproductive ratio. This is the expected

number of secondary cases that a single newly

infected addict will cause on entering an entirely

susceptible addict population. We find that

R0 =
λ1α(1 − φ)

(µ + δt + δ)(τ̂1 + λ1θ̂)

[
λ1 +

λ2δt

(µ + δ)

]

where τ̂1 = τ/γ and θ̂ = θ + φ − θφ.

We show that the disease will always die out if

R0 ≤ 1, whilst if R0 > 1, as well as the disease-

free equilibrium (which is always possible) there

is a unique endemic equilibrium which is locally

asymptotically stable. We verify these analytical

results by using deterministic computer simula-

tion using the computer package SOLVER. Our

simulations suggest that if R0 > 1 then provided

only that disease is initially present in either ad-
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dicts or needles then it will eventually tend to the

unique endemic equilibrium.

We also look at some simulations for a

stochastic version of this model. For the stochas-

tic model some simulations go extinct. In those

simulations which do not go extinct the preva-

lence of infection in both addicts and needles

exhibit long term random fluctuations about their

respective deterministic endemic equilibrium lev-

els.

3. CONTROL STRATEGIES

For the deterministic model we assess the ef-

fect of HIV testing and needle exchange on dis-

ease incidence. We use both the basic repro-

duction number R0 and the endemic equilibrium

level of disease prevalence in addicts as effec-

tiveness measures for differing control strategies.

We look at how the equilibrium endemic preva-

lence varies with the injection sharing rate and

HIV testing rate and produce graphs of how R0

and the endemic equilibrium level of prevalence

in addicts vary with different control strategies.

We find that HIV testing will be an effective con-

trol measure only provided that addicts are both

tested regularly and greatly reduce their needle

sharing rate. Needle exchange can be an effec-

tive control measure provided that needles are

exchanged regularly.

4. VARIABLE INFECTIVITY

The model described above assumes that all ad-

dicts are equally infectious throughout their en-

tire infectious period. In reality the viral load

of an addict has been shown to vary throughout

the addict’s infectious lifetime, being very high

for a relatively short period immediately after the

initial infection, then very low for a long period

and finally rising to an intermediate level just be-

fore the addict develops clinical AIDS (Seitz and

Müller (1994)). It seems reasonable to assume

that the infectivity of an HIV-infected individual

shows a similar variability.

We outline a basic variable infectivity model

which divides the addicts into three infectious

stages but assumes that all needles have the same

infectiousness. This model has been analysed

in detail in Greenhalgh and Lewis (2001). We

derive an expression for the basic reproduction

number R0 and obtain some equilibrium and sta-

bility results. The pattern of results is very simi-

lar to those for the single stage infectivity model.

Again we perform deterministic simulations to

verify the analytical results and then examine the

effect of introducing stochasticity into the model.

Finally we graphically examine the effect of

needle cleaning and needle exchange on the long

term prevalence of disease in needles and addicts.

We derive expressions for the critical needle ex-

change rate to eliminate the disease for a given

needle cleaning probability and the critical nee-

dle cleaning probability to eliminate the disease

for a given needle exchange rate.

5. CONCLUSIONS

By performing an equilibrium and stability anal-

ysis on our deterministic needle sharing models

we were able to identify suitable performance

measures for control interventions such as needle

cleaning and needle exchange. These were the

basic reproduction number R0 and the endemic

equilibrium prevalence level of HIV amongst ad-

dicts. We showed that needle exchange, HIV

testing and improved cleaning may all be po-

tentially effective control strategies against the

spread of HIV amongst IDUs. Our analysis

has provided an empirical justification for intro-

ducing the above strategies. These issues are

discussed more fully in Lewis and Greenhalgh

(1999).
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1. INTRODUCTION 

 
Recent advances in experimental techniques 
have facilitated rapid expansion of knowledge 
about intracellular processes, intercellular 
communication, processes that take place during 
viral infection. On the other hand, mathematical 
models describing infection dynamics in cell 
populations have been developed much earlier 
and are still a subject of research. This paper 
aims at bridging the gap between models of 
intracellular processes and population dynamics. 
It is focused on viral infection dynamics in a 
cell population, affected by interferon-mediated 
antiviral response.  
Interferons (IFNs) are very important 
components of the immunodefense system. 
They are produced by most cell types, and 
following viral infection are released to 
intercellular environment, signaling danger to 
other cells (e.g. Sen, 2001, Kalvakolanu, 2003). 
Thus they elicit antiviral response by activating 
cascades of biochemical processes (so called 
signaling pathways) in other cells. The model 
includes this release which will be a basis for 
modeling of processes on population level.  
A standard, compartmental model is used to 
describe dynamics of cell population (see, e.g. 
Nowak et al., 1996, Reynolds et al., 2006). Its 
parameters depend on intracellular biochemical 
processes, mentioned above. The model is 
roughly described in the subsequent section. 
Taking into account that interferon is not only a 
in vivo produced protein, but also is used as a 
therapeutic agent (Bekisz et al., 2004), it is 

possible to use the model presented here to 
design of treatment protocols. For that aim, an 
optimization problem can be stated and solved, 
applying the methodology developed previously 
for cancer chemotherapy (Swierniak and Smieja 
2005; Ledzewicz and Shaettler, 2006).  
 
 

2. MATHEMATICAL MODEL 
 

At the population level five compartments are 
considered. Let N0, N1, N2 denote the average 
number of uninfected and susceptible, virus-
resistant and infected cells, respectively. Two 
compartments are used for describing virus 
dynamics, Pe and Pi, denoting viral load in 
extracellular environment and inside cells, 
accordingly. Then, the system dynamics can be 
described by the following set of equations: 
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where λi correspond to degradation rates of 
species i, k0 and kprod are production rates of new 
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cells and virons, respectively, ke and ki denote 
secretion and internalization rates, correspond-
ingly, a0 is an infection rate and U represents 
interferon concentration. Functions b0(U) and 
k2(U) reflect two different antiviral actions of 
interferon (defense against infection and 
marking of infected cells for killing by immune 
system) with U being a control variable. 
Two different models are analyzed in the paper. 
In the first one, interferon is both a product of 
intracellular signaling pathways and a ligand 
that activates them. Concentration U is an 
output of the model describing dynamical 
processes taking place inside cells. Functions 
b0(U) and k2(U) also result from analysis of 
signaling pathways. Due to limited space in the 
extended abstract they cannot be described here. 
In short, the model consists of more than 20 
ODEs (Smieja et al. 2006) and only in some 
cases can be approximated by simple dynamical 
time-lag elements. 
The second model describes behavior of 
population of cells with damaged immune 
defense, which do not produce interferon. Then, 
interferon concentration U is a result of a 
therapy and is introduced to the extracellular 
environment as a drug component. 
Subsequently, a problem of finding optimal 
therapy arises, addressed in the following 
section. 

 
 

3. OPTIMIZATION PROBLEM 
 

The goal of therapy is to minimize the number 
of infected cells after a given therapy horizon T 
and reduce side effects of a drug being used. 
Therefore, the performance index to be 
minimized can be defined as  

∫+=←
T

U
dUrTNrJ

0
120 )()(min ττ  

The model can be subsequently expanded to 
include active virus destruction by the cells of 
immune system and then the performance index 
would include the term Pi(T) + Pe(T). 
To solve the optimization problem Pontryagin 
maximum principle is used, as in (Kimmel and 
Swierniak, 2004). 
 

4. CONCLUSIONS 
 

Combining compartmental models of 
population dynamics with models of signaling 
pathways is an effective tool to analyze how 
intracellular processes affect behavior of cell 
populations. Moreover, it makes it possible to 
mathematically define problems of optimizing 
therapy. Though such attempts have been made 

before, the existing solutions either neglected 
pharmacodynamics or assumed its simplest 
possible model. Other approaches concentrated 
only on intracellular processes, assuming that 
drug actions are is proportional to concentration 
of some products inside cells (Ali et al., 2006).  
The author was partly supported by internal 
grant of the Silesian University of Technology 
BW/Rau1/2007. 
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1. BACKGROUND

Oncogene signaling is known to deregulate cell
proliferation resulting in uncontrolled growth
and cellular transformation. Gene amplifica-
tion and/or somatic mutations of the HER2/Neu
(ErbB2) proto–oncogene occur in approximately
20% of breast cancers. A therapeutic strategy
that has been used to block HER2 function is
the small molecule tyrosine kinase inhibitor la-
patinib. Using human mammary epithelial cells
that overexpress HER2, we determined the anti–
proliferative effect of lapatinib through measur-
ing the total cell number and analyzing the cell
cycle distribution. A mathematical model was
used to interpret the experimental data.

2. RESULTS

The model suggests that lapatinib acts as ex-
pected by slowing the transition through G1

phase. However, the experimental data indi-
cated a previously unreported late cytotoxic ef-
fect, which was incorporated into the model.
Both effects depend on the dosage of the drug,
which shows saturation kinetics.

3. CONCLUSIONS

The model separates quantitatively the cytostatic
and cytotoxic effects of lapatinib and may have
implications for preclinical studies with other
anti–oncogene therapies.
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1. Biological background

For a eukaryotic virus to successfully infect and

propagate in cultured cells several events must

occur: The virion must identify and bind its cel-

lular receptor, become internalised, uncoat, syn-

thesize viral proteins, replicate its genome, as-

semble progeny virions, and exit the host cell.

The virions bud off from the cell, gaining an en-

velope from the cell membrane as they exit. The

new viral particle infects another cell to repeat

the cycle. Usually, during the repeated process

of self-replication, the virus destroys host’s cells.

While these events are taking place, intrinsic

host defenses activate in order to defeat the virus.

The first-line defense against viruses is based on

innate immunity. This includes, among others,

activation of the interferon system, induction of

apoptosis, and attempted elicitation of immune

responses via chemokine and cytokine produc-

tion. Interferons are a family of active biochem-

ical species, which help to fight viral infections

by spreading from infected to uninfected cells

and triggering production of effector molecules.

The interferons interact with receptors located on

the membrane of uninfected cells, which leads to

the activation of the reactions cascade in the un-

infected cells and production of some proteins.

These latter when activated confer on cells resis-

tance from the virus (Rose et al. 2001).

To get a better insight into the dynamics of the

processes described above we developed a math-

ematical model of dynamics of viral infection in

vitro, including infection, cell death, production

of interferon and development of resistance. The

dynamics of the model can be understood as a

combat between the invading virus particles and

the ability of the immune system to react to the

invasion by producing substances conferring re-

sistance to virus. We concentrate on the case,

in which the supply of unexposed cells ceases

at the moment of infection. This corresponds to

conditions prevalent in cell culture experiments.

The model is motivated by experi-

ments involving vesicular stomatitis virus,

(Lam et al. 2005; Rose et al. 2001), and res-

piratory syncytial virus (Rose et al. 2001)

including unpublished experimental results

performed in Dr. Allan Brasier’s laboratory

of the University of Texas Medical Branch in

Galvestone.

2. Mathematical models

We consider a model for the dynamics of viral in-

fection, which involves wild-type, i.e., unexposed

to virus (W ), infected (I) and resistant (R) cells,

as well as particles of virus (v) outside cells,

and molecules of interferon (i), the substance re-

leased by infected cells, which boosts the resis-

tance of wild-type cells. The model consists of

five ordinary differential equations for variables

W , I , R, i and v, each being a function of time,

W ′ = −α1vW − α2iW,

I ′ = −µII + α1vW,

R′ = α2iW,

i′ = −µii + αiI − α3iW,

v′ = −µvv + αvI − α4vW,

with initial conditions

(W, I,R, i, v)(0) = (W0, I0, R0, i0, v0),
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To understand influence of the intracellular repli-

cation process on the observable spread of in-

fection, we differentiate among the intracellular

stages of infection for infected cells using an ad-

ditional variable describing the age of infection.

Infected cells of different age produce interferon

at different rates and release virions at different

rates. Mathematically, this variant requires an

additional transport-type partial differential equa-

tion to model the infection-age structure in in-

fected cells,

∂I(t, a)

∂t
+

∂I(t, a)

∂a
= −µI(a)I(t, a), a > 0

I(t, 0) = v(t)W (t), t ≥ 0

However, the transport process can be reduced

to distributed delay terms in two of the model

equations. Therefore, the model with structure

can be analysed using local linearised stability

results for the functional (delay) type differential

equation system (Diekmann et al. 1995).

3. Results

The methods we used to analyse our models in-

volve both global and local methods. As it hap-

pens, a conservation law can be derived for the

model without structure, application of which

guarantees that the solutions of the model con-

verge to limit values as t → ∞. The same con-

servation law allows to conclude that unexpect-

edly, in the case with virus mortality, there is

always a residual population of wild-type cells.

When the virus mortality rate is equal to zero,

this is not necessarily the case.

The conservation law can be extended to the

structured case, under some additional hypothe-

ses concerning supports of age-dependent mor-

tality and infectivities. This law is mathemati-

cally interesting, since it is not a complete law

as frequently used in the epidemics theory, how-

ever together with nonnegativity, it provides up-

per bounds, which sufficiently constrain the so-

lutions.

Let us notice that the system, both in the un-

structured and structured versions, is somewhat

unusual in that it does not have unique equilib-

rium points. The limits to which the system is

converging strongly depend on initial conditions.

This property has an impact on the linearised

stability. Attracting properties are limited to the

subspace spanned by eigenvectors corresponding

to nonzero eigenvalues, while the solution slides

along the complementary subspace. In the case

of the structured model, considerations of lin-

earised stability can be done using a extension

of the Mikhailov criterion.

Conditions of stability, which we obtained,

seem to have interesting biological interpreta-

tions. First of all, the structure can have a sta-

bilising (respectively, destabilising) effect even if

the expected lifetime virus production of an in-

fected cell is higher (respectively, lower) in the

structured model than in the unstructured model.

Also, delaying and shortening the time of new

virus synthesis lead to a stabilising effect of

structure. These results illustrate the importance

of the dynamics of the process of virus prolif-

eration and death of the infected cells. In the

ODE system, duration of these processes can be

understood as being described by exponentially

distributed random variables. Our results indi-

cate that this is not always sufficient and illustrate

the need to understand these processes.

One of the important elements of the model

is the presence of a mechanism of interferon-

induced virus resistance. Interferon can be pro-

duced only by infected cells and confers resis-

tance (in our model a complete resistance) on

wild-type cells. It is interesting that setting the

interferon production rate to zero does not qual-

itatively change the behaviour of the system.

However, it reduces the total number of wild-

type and resistant cells.
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1. INTRODUCTION 

 
Hematopoiesis has remained a subject of intense 
study over the years because it is basically a 
massive process in the human body that in-
volves various distinct cell lineages and results 
in the production of billions of different cell 
types each day. The genesis of this phenomenon 
is rooted in pluripotent stem cells in the bone 
marrow (BM) and involves a pool of totipotent 
stem cells that provide unipotent stem cells to 
the granulocytic, erythrocytic, thrombocytic and 
other lines. In each line, unipotent stem cells 
supply cells to a number of nonproliferating 
differentiation compartments in the BM before 
the release of mature neutrophils, erythrocytes, 
platelets, and other cell types into the blood. 

There are a number of disorders such as the 
myelodysplastic syndromes (MDS) that negati-
vely affect the normal functioning of the hemo-
poietic system and that are not yet completely 
understood as is evidenced by the absence of a 
known cure in certain instances (Anderson et. 
al., 1993; Shimazaki et. al., 2000). The myelo-
dysplastic syndromes can be described as a 
group of acquired hematopoietic disorders with 
evidence of trilineage dysplasia and an approxi-
mately 30% incidence of eventual transforma-
tion into acute myeloid leukemia (Raza et al., 
1995a). These disorders are clonal in nature and 
involve one or more clones. They evolve from a 
transformation of the normal hematopoietic 
state into the precancerous disease state. While 
some investigations of MDS have led to 
observations of ineffective hematopoiesis (Raza 

et. al., 1995a, b; Parcharidou et. al., 1999) in the 
BM arising from massive apoptosis of cells in 
this compartment others have suggested that the 
precise relationship between increased apoptosis 
of myeloid precursors and cytopenias should be 
more precisely explored (Lepelley et. al., 1996).  

Our aim is to contribute to deepening and 
enriching the understanding of MDS and its 
treatment through the use of biomathematical 
models that give insight into its etiology and 
evolutionary dynamics. In the process of doing 
this we hope to address some of the discrepan-
cies arising from the MDS investigations with 
the view to proposing possible resolutions of 
such discrepancies. Consequently, we propose 
to start our investigations by considering hema-
topoietic dynamics in the peripheral blood and 
marrow since these compartments understand-
ably form the overwhelming focus of MDS 
research. We then end up discussing ways in 
which this disease can be controlled. 
� 

2. MODEL DESIGN AND ANALYSES 
 
By relying on information from the literature re-
garding hematopoiesis (Mackey & Glass, 1977; 
Kazarinoff & denDriessche, 1979; Lord et. al., 
1992; Schmitz et. al., 1993; Dale et. al., 1998; 
Price et. al., 1996; Schrier, 1988; Afenya, 1996; 
Marer & Skacel, 1999) and drawing upon 
investigations related to MDS (Anderson et. al., 
1993; Hellstrom-Lindberg et. al., 1997; Shim-
azaki et. al., 2000; Raza et. al., 1995a, b; Khan 
et. al., 1991; Parcharidou et. al., 1999; Lepelley 
et. al., 1996; Mundle et. al., 1996, 2000), it is 
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appropriate to consider a model that comprises 
two broad compartments –a BM compartment 
and a peripheral blood (PB) compartment. Since 
the BM is said to be surprisingly uniform 
(Schrier, 1988), it will be assumed to a reason-
able first approximation that the cells in this 
tissue are homogeneously distributed. This 
assumption is stretched to the PB compartment. 

It is well known that cells in the BM spend 
some time maturing (Lord et. al., 1992; Schmitz 
et. al., 1993; Dale et. al., 1998) in this tissue 
before entering the blood to perform various 
functions during hemopoiesis. This means that a 
time lag due to cell maturation exists during the 
movement of cells from the BM compartment to 
the PB. Also in existence is a feedback mechan-
ism through which cells in the BM are instruc-
ted to reproduce to account for shortfalls in the 
cell population of the PB compartment when 
situations that entail such developments arise. A 
schematic description of hemopoietic function is 
shown in Figure 1. An interpretation of this 
description that yields the model can be stated in 
words as follows: 
[Rate of Change of the BM Cell Population] = 
[Growth Rate of Marrow Cells] + [Feedback from 
the Blood to the BM] –[Rate of BM Cell Apoptosis] –
[Release Rate of BM Cells to the Blood]. 
[Rate of Change of the Blood Cell Population] = 
[Rate of Influx into and Turnover of Cells in the PB] 
–[Rate of Efflux of Cells out of the PB]. 

We note that the rate of influx into and turnover 
of cells in the PB encompass the rate at which 
BM cells are released into this compartment and 
the rate at which PB cells are produced (Lord et. 
al., 1992) in this compartment. The efflux rate 
of cells out of the PB include the rate of cell loss 
or cell disappearance (Lord et. al., 1992) out of 
this compartment in addition to the feedback 
sent from the blood to the BM. In mathematical 
terms we obtain the following system of 
equations:  
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where the parameters and variables in the equa-
tions above are described as follows: 
�m(Nm) = state-dependent growth rate of the BM 
cells per unit time, F(Nb) = state-feedback from 
the PB to the BM, �md = fractional apoptotic rate 
of BM cells per unit time, �bd = fractional rate of 
PB cell loss per unit time, Tm = transit time of 
cells in the BM due to maturation, �(Nm(t –Tm)) 
= release rate of cells from the BM into the PB, 
Nm(t) = population of BM cells/liter at time t, 

and Nb(t) = population of PB cells/liter at time t. 
The quantity Nmc = critical homeostatic level of 
cells per liter in the BM. In analyzing the model, 
functional representations are obtained for 
�m(Nm) and F(Nb) and system behavior is 
considered with regards to the parameters. The 
issues of massive apoptosis and ineffective 
hematopoiesis are placed within our analytical 
considerations. Control of MDS is analyzed and 
simulated by focusing on the mechanisms that 
could influence maturation delays. 
 
 
 
 
 
 
 

Fig.1. Schematic description of hemopoietic function 
 

3. CONCLUSIONS 
 

Preliminary analysis of the model shows that in 
normal functioning mode, the hematopoietic 
system evolves towards a stable state in which 
feedback mechanisms play an important role in 
signaling to cells in the marrow to shift to higher 
levels of production to offset blood cell loss due 
to various mitigating circumstances. These me-
chanisms also play the roles of controlling the 
production of cells when the population of cells 
in the marrow is at or above a certain critical 
level. A notable model prediction is the inability 
of the hematopoietic system to function normal-
ly when massive apoptosis occurs in the bone 
marrow as has been shown to be the case in the 
myelodysplastic syndromes in a number of 
clinical investigations (Anderson et. al., 1993; 
Shimazaki et. al., 2000; Raza et. al., 1995a, b; 
Parcharidou et. al., 1999; Mundle et. al., 1996). 
This prediction is pursued further in simulations 
of the model to explore how control of MDS 
could be carried out without causing more 
massive apoptosis in the marrow. 
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1. INTRODUCTION

The NF-�B regulatory network controls in-
nate immune response by transducing variety of
pathogen and cytokine stimuli into well de�ned
single-cell gene regulatory events. Our analysis
of the system is based on the two-feedback loop
stochastic model of the NF-�B pathway, which
combines the signal transduction cascade that
connects cell surface receptors with the core reg-
ulatory module we analyzed previously. In the
current work we focus on the TNF� signaling,
a process initiated by its binding to the surface
receptor TNFR1. In short (Fig. 1), the action of
regulatory pathway may be summarized as fol-
lows: The binding of TNF� trimer initiates for-
mation of an active receptor complex. The active
receptors activate the IKKK kinase (transforma-
tion from IKKKn to IKKKa), which in turn acti-
vates the IKK kinase (transformation from IKKn
to IKKa). Active IKKa binds transiently to cy-
toplasmic (NF-�BjI�B�) complex and phospho-
rylates I�B� initiating its degradation. Released
NF-�B enters the nucleus to induce transcription
of its own inhibitors: I�B� and A20 genes. The
�rst negative feedback loop involves the I�B�
protein, which is rapidly resynthesized, enters
the nucleus and recaptures NF-�B back into the
cytoplasm. A second level of negative autoregu-
lation occurs with the synthesis of A20, a which
attenuates IKK activity, mostly by converting
IKKa into inactive form IKKi, what protects
I�B� from continuous degradation.

Fig. 1. Schematic of NF-�B regulatory pathway.

2. RESULTS

We identi�ed two stochastic switches key to
the functioning of the NF-�B pathway: (1) Ac-
tivation of A20 and I�B� genes due to binding
of NF-�B molecules to the genes promoters and
(2) activation of TNFR1 receptors due to binding
of TNF� trimers. Both switches are associated
with ampli�cation pathways capable of transmit-
ting single molecular events into tens of thou-
sands of synthesized or degraded proteins.
(1) Activation of A20 and I�B� genes results
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in synthesis of tens or hundreds of mRNA mole-
cules. In turn, a single mRNA molecule is a tem-
plate for synthesis of hundreds of protein mole-
cules. In this way the two I�B� gene copies are
su¢ cient to replenish pool of I�B� proteins of
about 100,000 molecules, within a half hour.
(2) Binding of a single TNF� trimer leads to

formation of a stable active receptor complex
with inactivation half time of order of 20min.
During this time the single active receptor may
activate numerous IKKK kinase molecules. In
turn, each active IKKKa activates numerous
IKK kinases, and each of IKKa may phospho-
rylate several I�B� molecules leading to their
degradation. This ampli�cation mechanisms en-
ables cells to respond to femtomolar concentra-
tions of TNF� by massive degradation of I�B�
and nuclear translocation of NF-�B.
We performed the single cell stochastic numer-

ical simulations of our model to analyze the in-
dividual cell responses to persistent stimulation
in a broad range of TNF� doses, Fig. 2. At high
TNF� dose (above 1ng/ml) the receptor activa-
tion rate is high and most of cells are activated
in �rst few minutes after the TNF� stimulation
begins. As a result, the �rst peaks of NF-�B
nuclear to cytoplasmic oscillation are well syn-
chronized among cells. Synchronization of sub-
sequent peaks of NF-�B oscillations decreases
due to the stochastic processes of activation of
TNFR1 receptors and A20 and I�B� genes. For
low dose (0.1 and 0.03 ng/ml) the activation of
each cell is typically due to the activation of sin-
gle receptors and thus the �rst response time
varies between cells. As a result, the NF-�B os-
cillations are not synchronized at all.

3. CONCLUSIONS

Stochastic cell activation leading to the mas-
sive NF-�B nuclear translocation and stochastic
gene activation leading to the burst of proteins
provides a particular �stochastic robustness� in
cell regulation. Stochastic robustness assures the
minimal response to the signal. Decreasing mag-
nitude of the signal reduces mostly the probabil-

ity of response, which leads to a smaller fraction
of responding cells. This can be a useful strategy:
If the TNF� signal is low, some cells respond by
a massive NF-�B translocation, whereas some do
not respond at all. It helps to avoid ambiguity,
such as when a small nuclear concentration of
NF-�B leads to activation of an unde�ned frac-
tion of NF-�B responsive genes. It is natural to
expect that such an ambiguous response might
do more harm than good. Therefore a better
strategy at the tissue level, with a low signal,
is to let some cells respond, and let some cells
ignore the signal. Stochastic robustness allows
cells to respond di¤erently to the same stimula-
tion, but makes their individual responses better
de�ned. Both e¤ects could be crucial in early im-
mune response: Diversity in cell responses causes
the tissue defense to be harder to overcome by
relatively simple programs coded in viruses and
other pathogens. The more focused single cell re-
sponses help cells to decide their individual fates
such as proliferation or apoptosis.

Fig. 2. Amplitude of NF-�B oscillations from sin-
gle cell simulations for �ve TNF� doses. Each cell is
marked by a di¤erent color.
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1. Introduction

The proper structure and function of multi-

cellular organisms is a result of interactions of

the individual cells in the body, and is controlled

and guided by various signals interchanged be-

tween the neighbouring cells or sensed from the

cell local microenvironment. We are interested

in building a bio-mechanical model that can be

used to investigate cell collaborative or compet-

itive behaviour within the tissue that may lead

to the development and maintenance of normal

tissues, or to the formation of various tumours.

2. The model

Our computational model of individual cells is

based on the immersed boundary method (Pe-

skin, 2002) and couples the continuous descrip-

tion of a viscous incompressible cytoplasm and

the extracellular matrix, with the dynamics of

separate elastic deformable cells, containing their

own elastic plasma membrane, fluid cytoplasm

and individually regulated cell processes, such

Fig. 1. The cell boundary points (dots) are connected by

short linear springs (thin lines); cell nuclei (circles) are lo-

cated inside the cell; separate cells are connected by the

adherent links (thick red lines). The cell cytoplasm en-

closed by the plasma membrane is modelled as a viscous

incompressible Newtonian fluid.

as cell growth, division, epithelial polarisation,

apoptosis, and exchange of signals with the sur-

rounding microenvironment.

Due to such interactions with other cells and

with the environment cells can undergo certain

life processes and acquire specific phenotypes.

Every viable cell is constantly inspecting its mi-

croenvironment to decide if there is enough of

free space for its growth. Cells located inside

the cluster may become too crowded to be able

to grow and can enter in the resting state. How-

ever, the accumulating cells do not simply remain

passively stuck together, instead, they actively

maintain selective adhesion with other cells and

with the extracellular matrix. This results in cell

apical-basal orientation (polarity) due to develop-

ment of a basal-lateral membrane domain com-

posed of membrane receptors in contact with the

extracellular matrix and with two other cells, and

an apical side facing the hollow lumen. More-

over, a newly formed polarised cells can trigger

their neighbours to die by apoptosis that leads to

the formation of a lumen.

apoptotic cells

polarized cells dividing cell

growing cells

inner
cells

Fig. 2. Morphological alterations in phenotypically differ-

ent cells—enlargement of growing cells, formation of the

contractile furrow between a pair of daughter nuclei in the

dividing cell, shrinkage of the area in apoptotic cells, de-

velopment of distinct membrane domains in polarised cells.
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ρ

„

∂u(x, t)

∂t
+ (u(x, t) · ∇)u(x, t)

«

= −∇p(x, t) + µ∆u(x, t) +
µ

3ρ
∇s(x, t) + f(x, t), (1)

ρ∇ · u = s(x, t), (2)

f(x, t) =

Z

Γ

F(l, t) δ(x −X(l, t)) dl, (3)

s(x, t) =
X

k∈Ξ+

S
+(Y+

k , t) δ(x− Y
+

k ) +
X

k∈Ξ−

S
−(Y−

k , t) δ(x− Y
−

k ), (4)

∂X(l, t)

∂t
= u(X(l, t), t) =

Z

Ω

u(x, t) δ(x − X(l, t)) dx. (5)

3. Mathematical formulation

This model is defined on a two-dimensional do-

main Ω with fixed Cartesian fluid grid x and the

curvilinear grid X(l, t) for a collection Γ of cell

membranes. Eqs.(1)–(2) are the Navier-Stokes

equations and the law of mass balance, where

u(x, t) is the fluid velocity, p(x, t) is the pres-

sure, µ is the viscosity, ρ is the density, s(x, t)

is the source-sink distribution, and f(x, t) is the

external force density. Eqs.(3)–(5) define interac-

tions between the immersed bodies and the sur-

rounding fluid. Here, Y
±
k are the point sources

and sinks, and δ is the Dirac delta function.

4. Multicellular growth

This approach allows for modelling various mul-

ticellular phenomena by focusing on biomechan-

ical properties of individual cells and on commu-

nication between them and between the cell and

their microenvironment. It also allows to inves-

tigate how individual cells contribute to the for-

mation and maintenance of the whole complex

system. We have used this approach to model

abnormal tissue bending in the human placental

trophoblast (Rejniak et.al, 2004), normal devel-

opment of epithelial tissues (Rejniak & Ander-

son, submitted) and various tumours (Rejniak,

2007; Rejniak & Dillon, 2007).

Here, we want to present a specific exam-

ple of the formation of a hollow epithelial ac-

inus, discuss consecutive steps of its develop-

ment, specific relations between the neighbour-

ing cells leading to cell epithelial polarisation

and cell apoptotic death. We also present, how

changes in some model parameters lead to alter-

ation in the final acinar structure, its degeneration

and tumour-like behaviour.

Fig. 3. Formation of a hollow epithelial acinus: (a) a

small cluster of cells, (b) two cell subpopulations—inner

and outer, (c) emergence of outer polarised cells and inner

apoptotic cells, (d) a stable structure composed of one layer

of polarised cells surrounding the hollow lumen.
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1. INTRODUCTION 

 
One of possible approaches to modeling of cell 
signaling pathways is to use a set of nonlinear 
ODEs [de Jong 2002]. In order to estimate 
unknown parameters of such a model several 
experiments are performed, during which 
concentrations of part of variables are measured 
at rare discrete time moments. Usually, a 
blotting technique is used. In this work we focus 
on choosing optimal time moments for 
experiments. This problem has been 
investigated in the related literature. To solve it 
a matrix of correlation coefficients between 
sensitivities of measurements with respect to 
identified parameters is calculated [Jacquez, 
Greif 1985], [Jacquez 1998]. Then one tries to 
choose such time moments for which 
sensitivities are “less correlated”. The standard 
approach to optimization is the non-gradient 
Gauss-Seidl technique.  
In this work we calculate the gradient of the 
function of the correlation matrix with respect to 
times of measurements, then we propose a 
gradient-based algorithm. 
 

2. PROBLEM FORMULATION 
 

Let us consider a model of a cell signaling 
pathway in a form of a set of non-linear ODEs: 

 0( , , ); (0)x f x u x xθ=�

     

=  (1) 

where x  is a vector of state variables,  is an 
input signal and 

u
pRθ ∈  is a vector of identified 

parameters.  

The output equation is as follows 

 ( , )y g x u=  (2) 

For the simplicity of notation let us assume there 
is only one output variable which is measured at 
times  giving instantaneous values 1 2, , , nt t t…

 ( ) ( ( ), ( )) ; 1,2, ,i i i iy t g x t u t g i n= = = …  (3) 

After performing experiments one obtains 
observations 

 ( ) ( ) ; 1,2, ,i i iz t y t i nε= + = …  (4) 

where iε  is an error of zero mean and variance 
2
iσ . We assume that we have initial (rough) 

estimation of parameters 0 0 0
2, , ,i nθ θ θ…  for 

which measured variable (3) takes values 
0 0 0

2, , ,i ng g g… . 
We build the sensitivity matrix [Jacquez, Greif 
1985], [Jacquez 1998] as follows: 
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 (5) 

and based on it the Fisher information matrix 

  (6) 1TI G G−= Σ

where 1
1 2[1/ ,1/ , ,1/ ]ndiag σ σ σ−Σ = … . 
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If the determinant of  is non-zero then I 1I −  is 
proportional to the covariance matrix of the 
estimates of θ . We want the covariance matrix 
to me small. The criterion widely used is to 
maximize the determinant of . This is so 
called D-optimal design [Jacquez 1998]. The 
standard approach is to maximize  by 
finding optimal times  using non-
gradient Gauss-Seidl technique. To formulate a 
gradient-based algorithm we formulate 
following problem: 

I

det( )I

1 2, , , nt t t…

Problem. Find derivatives 

 det( ) ; 1,2, ,
i

I i
t

∂
=

∂
…

     

n  (7) 

 
3. PROBLEM SOLUTION 

 
Note that  is a function of the sensitivity 
matrix  so the problem stated above is to find 
the “sensitivity function of the function of other 
sensitivity functions”.  

det( )I
G

For particular time moment  one may write it

 
( )

( )0

0
1

det( ) det( )p i j

i ij i j

gI I
t g t

θ

θ=

∂ ∂ ∂∂ ∂
= ⋅

∂ ∂ ∂ ∂
∑ ∂

 (8) 

Let us denote the first factor under the sum (8) 
by jiq  and the second factor by jir . Then let us 

build matrices [ ], [ ], , n p
ji jiQ q R r Q R R ×= = ∈ . 

It can be shown that whole matrix Q  may be 
calculated as follows 

  (9) 12 adj(Q G−= Σ )I

The element jir  is the derivative w.r.t. time of 
the output of the following sensitivity model for 
the original model (1),(2): 

 
( ) ( ) ( ) ; (0) 0
( ) ( )

x u

x u

x f t x f t u f t x
y g t x g t u

θ θ= + +

= +

� =
(10) 

taken at time  where the sensitivity is 
calculated for 

it

jθ  which means the variation θ  
is a vector of zeros except one element number 
j  which equals 1. 

Unfortunately, practical using of (10) requires 
numerical derivation w.r.t. time. Hopefully, it is 
possible to derive following formula  

 ( )( ) ( ) ( ) ( )ji xx i i x i ir g t x t g t x t= + �  (11) 

that does not require any numerical derivation 
because both x  and x�  appear in the sensitivity 
model (10). 

In order to maximize  one can combine 
results (9) with (11) and compute all derivatives 
(7) and use any gradient-based optimization 
algorithm. 

det( )I

 
4. CONCLUSIONS 

 
This work is concerned with the problem of 
optimal design of experiments in sense of 
finding optimal times for measurements. The 
approach has one drawback at first glance. To 
design the experiment, which is performed in 
order to estimate parameters, we need initial 
(rough) estimations of parameters. It may be 
hard to guess such initial values of parameters 
and the experiment may be designed for quite 
different point in the parameter space. However, 
in practice several experiments for different 
variables are conducted and it is possible to plan 
each experiment based on all previous 
experiments starting with first non-optimally 
designed experiment. 
Having such a tool for experiment planning, two 
closely related problems may be solved: how 
many time moments are enough to estimate 
parameters and what variable (concentration of 
proteins, protein complexes or mRNA) should 
be measured.  
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1. INTRODUCTION 
 

p53 is a transcription factor that regulates 
cell cycle and functions as a tumor 
supressor. The concentration of p53 
increases in response to stress signal, such as 
DNA damage or oncogene activation. p53 
induces transcription of several hundred 
genes involved in cell cycle arrest and DNA 
repair. If the DNA damage proves to be 
irreparable it initiate apoptosis, the 
programmed cell death. In normal cells p53 
is usually inactive, kept at low level due to 
Mdm2 induced degradation. The DNA 
damage leads to p53 phosphorylation 
enhancing its stability. It results in 
prolonged oscillations of p53 and Mdm2. 
Since these oscillations are not 
synchronized, the only way to observe them, 
is by means of single cell experiments, (see 
Geva-Zatorski et al.). In all such 
experiments additional copies of p53 and 
Mdm2 genes are introduced to the genome 
(stable transfection). These copies code for 
fluorescently tagged proteins, which 
concentration and localization can be 
analyzed under the microscope.  
Since p53/Mdm2 oscillations are induced by 
elevated stability of p53 protein or lowered 
stability of Mdm2 protein there is a natural 
conjecture that a number of p53 and Mdm2 
copies may also influence these oscillations. 
This conjecture is supported by the evidence 
that the missing p53 copy results in  
haploinsufficiency and leads to tumor.  
 

2. RESULTS 
 

To verify how the number of gene copies 
influences the oscillations we constructed 
the simple model of p53/Mdm2 pathway 
based on positive and negative feedbacks 

introduced by Ciliberto et al.  The model 
consists of three components: p53, 
cytoplasmic Mdm2 and nuclear Mdm2.  

 
Fig. 1. Diagram of p53/Mdm2 network. 
 
The negative feedback arises since p53 
positively regulates production of Mdm2, 
and in turn Mdm2, when in nucleus, 
enhances p53 degradation. In addition p53 
inhibits nuclear import of Mdm2, and since 
nuclear Mdm2 induces p53 degradation, this 
leads to positive feedback. 
The pathway can be described by the system 
of three ordinary differential equations for 
p53, cytoplasmic and nuclear Mdm2 levels 
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where m and n are the numbers of p53 and 
Mdm2 gene copies, respectively.  
Since transcription is regulated by p53 
tetramers we assumed that p53 induces 
Mdm2 transcription following a Hill 
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function, with exponent 3. The nonlinear 
p53 degradation results from the fact that 
nuclear Mdm2 must attach several 
ubiquitines to p53, to initiate its degradation. 
DNA damage is modeled here by a rapid 
change in p53 and Mdm2 degradation 
coefficients. It is known that DNA damage 
leads to p53 phosphorylation enhancing its 
stability and increases Mdm2 degradation. 
As shown in Fig. 2 the model has the 
required property, i.e. the transition from 
stable steady point to limit cycle results both 
due to increased Mdm2 degradation or 
decreased p53 degradation.  

 
Fig. 2. Regions of stable limit cycles and 
stable steady states in ( 1d = p53 deg, 2d = 
Mdm2 deg) plane for m = n = 2.  
 
Finally, we analyze bifurcation diagrams 
(Fig. 3) to investigate how the transition 
from stable point to limit cycle (supercritical 
Hopf bifurcation) depends on the number of 
p53 or Mdm2 copies. As shown in Fig. 3 the 
bifurcation point moves towards higher p53 
deg. coefficients as number of p53 gene 
copies increases. On the other hand the 
increase in number of Mdm2 copies results 
in narrowing of oscillatory region (data not 
shown).  It shows that the change in gene 
copy number due to transfection or missing 
allele may induce oscillations even when 
DNA is intact, or it may inhibit oscillations 
when DNA is damaged. 
 

3. CONCLUSIONS 
 

Our study implies that when one of p53 
copies is missing, the system may 
remain in stable state even when DNA is 

damaged. This may lead to 
haploinsufficiency and results in tumor, 
since the oscillations of p53 and Mdm2 are 
needed to initiate transcription of p53 
dependent genes involved in cell cycle 
arrest, DNA repair or apoptosis.  
The analysis implies also that behavior of 
transfected cells can be qualitatively 
different from normal cells and that 
observed oscillations could be an artifact of 
experimental setup. Since Mdm2 
transfection has the opposite effect to p53 
transfection the p53/Mdm2 cotransfection 
experiments are more reliable (not shown). 

 
Fig. 3.  Bifurcation diagram. A, B and C 
denote, respectively, diagrams for normal 
cells (m = n = 2), p53 haploidal cells (m = 1, 
n = 2) and cells with p53 transfection (m =4, 
n = 2). Fin, dotted lines represent upper and 
lower limits of stable limit cycles, the bold 
lines represent stable steady states.   
 

REFERENCES 
 
Ciliberto, A., B. Novak and J.J. Tyson 

(2005): Steady States and Oscillations in 
the p53/Mdm2 Network. Cell Cycle, vol. 
4:3, 488-493. 

Geva-Zatorsky, N. et al. (2006): Oscillations 
and Variability in the P53 System. 
Molecular System Biology, msb4100068 

 
ACKNOWLEDGMENTS 

 
This work was supported by Polish 
Committee for Scientific Research Grants 
No. 4 T07A 001 30 and 3 T11A 019 29. 

265



     

 
 
 
 
 

Two feedback loop model of p53|Mdm2 signaling pathway 
 
 

Krzysztof Puszynski1, Tomasz Lipniacki2 
 

1Silesian Tech. Gliwice, Poland, krzysztof.puszynski@polsl.pl 
2IPPT Warsaw, Poland tlipnia@ippt.gov.pl 

  
Keywords: p53, Mdm2, signaling pathways, apoptosis. 

 
 

 
1. INTRODUCTION 

 
p53 is a transcriptional factor kept in healthy 
cells at low level under the control of its 
inhibitor Mdm2, but activated (phosphorylated) 
in response to DNA damage. When activated 
and present in high concentration, it induces the 
transcription of numerous genes involved in cell 
cycle arrest and DNA repair. If the last fails p53 
final job is to trigger the cell-death program 
called apoptosis. For this reasons p53 is often 
called “the guardian of the genome”.  
 

2. RESULTS 
  
In order to analyze the p53|Mdm2 system we 
expanded and improved the two-feedback loop 
model introduced by Ciliberto et al.   
 The first feedback is negative and couples 
Mdm2 with p53.  Namely, the phosphorylated 
p53 triggers production of Mdm2, which is 
activated, enters the nucleus and ubiquitinates 
p53 what results in its rapid degradation.  
The second feedback is positive in this sense 
that it blocks the negative loop. Since it involves 
additional three proteins PTEN, PIP3 and Akt it 
works on a much slower time scale than the 
negative feedback. Explicit introduction of 
PTEN--PIP3--Akt pathway adds time delay 
(neglected by Ciliberto et al.) and results in a 
novel model with substantially different 
dynamics. In short; p53 induces transcription of 
PTEN then PTEN triggers PIP3 deactivation.  
Active PIP3 is needed to activate Akt, which in 
turn is activator of Mdm2 enabling its nuclear 
entry.  Thus, deactivation of PIP3 blocks 
activation (phosphorylation) and nuclear entry 
of Mdm2 and in turn rescue p53.  
The system is activated by DNA damage (or 
oncogene stimulation), which results in p53 
phosphorylation. In turn phosphorylated p53 
induces synthesis of proteins responsible for 
DNA repair.  

 

 
 
Fig. 1. Diagram of p53|Mdm2 signaling 
pathway. Notice two feedback loops: negative 
involving p53 and Mdm2 proteins and positive 
involving p53, PTEN, PIP3, Akt and Mdm2. 
 
Analysis of the system indicates existence of 3 
distinct states; two steady points and limit cycle.   
1) Without DNA damage system remains in 
stable point (healthy cell). The negative 
feedback loop assures that p53 remains at low 
level under the control of its inhibitor Mdm2 
(see Fig. 2, t<0).   
2) When DNA is persistently damaged, but the 
slow positive feedback is blocked (e.g. no 
PTEN) the system converges to stable limit 
cycle (Fig. 2A). 
3) When DNA is persistently damaged and the 
slow positive feedback is intact the system after 
several oscillations converges to second stable 
point (apoptotic cell), characterized by high p53 
level and low Mdm2 level (Fig. 2B). This 
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second stable point is absent in Ciliberto et al. 
model.   
In real situation, there is a competition between 
DNA repair due to elevated level of p53 and 
action of the positive feedback. If DNA repair 
proceeds sufficiently fast, and the DNA damage 
is removed before Mdm2 phosphorylation is 
blocked by the slow positive loop, the system 
converges to the first steady state (healthy cell, 
Fig. 2D). However, if DNA damage is 
irreparable (Fig. 2B) or the DNA repair 
proceeds to slow (Fig. 2C) p53 rises to high 
level what potentially leads to apoptosis (not 
modeled explicitly in this work).   
 

3. CONCLUSIONS  
 

Recently, the dynamic of fluorescently tagged 
p53 and Mdm2 was observed over several days 
after radiation in living cancer cells. The 
experiment by Geva-Zatorsky et al., showed 
irregular oscillations, with period of about 5.5 
hours continuing for as long as 72 hours. The 
fraction of oscillated cells increased with 
gamma dose reaching 60% following 10Gy. 
Even at that dose, the analyzed cells proliferated 
and do not exhibited apoptosis. The prolonged 
(persistent) oscillations are observed in our 
model only when the positive feedback loop is 
at some point blocked, and DNA is irreparable. 
This supports Geva-Zatorsky et al. conjecture 
that human breast cancer epithelial cells, they 
studied, “might be deficient in some aspects of 
p53 regulation and downstream apoptotic 
responses”.  
Based on our analysis we would expect that 
normal untransformed cells after about 24 hours 
of unsuccessful DNA repair, would commit to 
apoptosis. 
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Fig. 2. Model predictions of the cell response to 
DNA damage. In time T < 0 the system is in 
first stable point (healthy cell). DNA damage 
occurs at T = 0. Panel A: without DNA repair 
and with positive feedback blocked the system 
converges to limit cycle. Panel B: with positive 
feedback intact and no DNA repair the system 
converges to the second stable point (apoptotic 
cell). Panel C and D: When positive feedback is 
intact and DNA is repairable then there is a 
competition between DNA repair and Mdm2 
inhibition by a positive feedback. If repair is to 
slow (panel C) p53 goes high up and the cell 
commits to suicide. If the DNA repair is fast 
enough  (panel D) p53 converges to the initial 
level and the cell survives. 
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1. Introduction

Consider the problem of deciding whether a
trajectory pair (u∗(t), x∗(t)), t ∈ [0, T ] of a
generally nonlinear system ẋ = F (x, u), x ∈
Mn is a time-optimal solution connecting the
endpoints x(0) and x(T ), or whether the sys-
tem is locally controllable about this trajec-
tory. The classical approach analyzes the end-
point map u 7→ x(T, u) (for fixed T and x(0))
and determine whether or not it is locally an
open map. The Pontryagin Maximum Prin-
ciple and high-order open-mapping theorems
provide necessary conditions for a trajectory-
control-pair to be optimal. Sufficient con-
ditions for optimality (and necessary condi-
tions for nonlinear controllability) are harder
to obtain. Like the Legendre-Clebsch condi-
tion, they generally take the form of tests of
definiteness for second order derivatives. Re-
cently Agrachev introduced an attractive al-
ternative by developing a notion of curvature
of optimal control that generalizes classical
Gauss (and Ricci) curvatures. That theory
has been developed for systems whose controls
take values in a circle or sphere u ∈ Rn−1.

We present initial studies of how this no-
tion of curvature provides insight into the lim-
iting case when the circles become degenerate
ellipses in the form of closed intervals or lower
dimensional cubes. Of particular interest are
well studied accessible, but uncontrollable,
nonlinear systems, and systems that exhibit
conjugate points. We study how the curvature
and conjugate points vary when the set of con-
trolled velocities S1 = {(u1, u2) : u2

1 +u2
2 = 1}

∗This work was partially supported by the National

Science Foundation through DMS 05-09030.

is continuously deformed into the interval I =
[−1, 1]. For computational reasons we imple-
ment this by adding the parameter ε into the
controlled vector field as follows, and leaving
the set of control values U = S1 the same.
{

ẋ1 = f1(x1, x2) + u1 subject to
ẋ2 = f2(x1, x2) + εu2 u2

1 + u2
2 = 1

(1)

Of particular interest are deformations of the
well-understood systems (when ε = 0)

{
ẋ1 = u1

ẋ2 = xm
1 + εu2

(2)

and {
ẋ1 = −x2 + u1

ẋ2 = x1 + εu2
(3)

with |u1| ≤ 1.
We are interested in how their properties

arise as limits of deformations of the corre-
sponding systems of the form (1). The first
family of systems is small-time locally con-
trollable if and only if m is odd. If m is
even, the reachable sets exhibit well-known
fold-overs with consequent appearance of con-
jugate points.

2. Curvature of optimal control

Unlike the classical Gauss curvature,
Agrachëv’s curvature is not a function
on the state-space, but rather on the cotan-
gent bundle over the state-space. In the case
of planar systems, the theory is formulated
via a distinguished vertical vector field v on
the cotangent bundle which is characterized
by the identity L2

vs = −s + bLvs where
s = p1dx1 + p2dx2 is the tautological one-
form on T ∗R2 restricted to the level surface
H of the Hamiltonian (and L denotes Lie
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Fig. 1. Reachable set at T = 2 of system (2) with
m = 2, ε = 1

derivative). Together with the Hamiltonian
field ~h and their Lie bracket one obtains a
moving frame

V1 = v, V2 = [v,~h], V3 = ~h

on the level surface H−1(1) ⊆ T ∗R2. One
readily verifies that the Lie derivatives of this
frame satisfy

[~h, V1] = −V2, [~h, V2] = κV1, [~h, V3] = 0
where κ is a scalar function on H and is called
the curvature of the control system (1). Writ-
ing the Jacobi equation along an extremal
(xt, pt) in terms of this moving frame one ob-
tains the time-varying linear differential equa-
tion

ÿ + κty = 0, y(0) = y(tc) = 0.

which has no nontrivial solutions when κ ≤ 0.
In the case on not necessarily negative curva-
ture, standard integral estimates yield lower
bounds on the first positive conjugate time
tc.

Notable results for very specific classes of
systems were obtained by Serres (4) who stud-
ied Zermelo’s navigation problem, basically
the undeformed (ε = 1) system (1). Recent
work by Agrachev et. al. (2) extended the
theory to higher dimensional systems. Com-
plementary to this is recent work by Chitour
and Sigalotti, who investigate the Dubins’ car
on curved surfaces (3; 5).

3. Deformations and curvature

While most pertinent literature (1; 2; 3; 4; 5),
is concerned with the further theoretical de-
velopment, a main thrust of our work is to

Fig. 2. Reachable set at T = 2 of system (2) with
m = 2, ε = 0.2

explore the boundaries of what is computa-
tionally feasible with current technology, su-
ing a combination of symbolic and numeric
engines.

While already in the undeformed case the
formula for the curvature in coordinates fills
a whole page, in the case of deformed con-
trol sets, the formulae become much too large
to be reproduced here. One starts with the
Hamiltonian vector field in polar coordinates
Next we compute the distinguished vertical
vector field v, and the iterated Lie bracket
[~h, [~h, v]] from which we then obtain both for-
mulae for the curvature, now depending on
the deformation parameter ε ∈ [0, 1], and nu-
merical simulations of the time evolution of
the co-state vector along extremals, as well
their projections onto the state-space, as il-
lustrated in figures 1 and 2.
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1. INTRODUCTION

Ocean research and exploration has evolved to

the point that underwater mechanical systems are

a necessity. In order to expand our knowledge

base we are pushing to go farther and deeper

into the abyss. Among the many technologi-

cal advances, autonomous underwater vehicles

(AUV’s) are attracting recent research interests.

The ability to reduce or eliminate the human fac-

tor in ocean research reduces exploration costs

and risk to human life. The ultimate goal is to

give the AUV full autonomy and have it do the

work for us. With this increasing load of respon-

sibilities, efficiency of movement and energy us-

age become more important. In this paper, we

study the energy minimization problem for a sub-

merged rigid body in a real fluid. For us, a real

fluid is a viscous ideal fluid. The equations of

motion for a rigid body in a real fluid can be

written as a forced affine connection control sys-

tem on the differentiable configuration manifold

SE(3):

∇γ′γ′ =

(
M−1

(
Dν(ν)ν + Rtα + ϕν

)
J−1

(
DΩ(Ω)Ω − rB × Rtα + τΩ

)
)

(1)

where α = ρgVk. Here, ∇ is the Levi-Civita

affine-connection for the Riemannian metric in-

duced by the kinetic energy T . The matrices

Dν(ν),DΩ(Ω) represent respectively the drag

force and momentum. Finally, we have a restor-

ing force and a restoring moment. The only mo-

ment due to the restoring forces is the torque

from the buoyancy force −rB × RtρgVk where

rB is the vector from CG to the center of buoy-

ancy CB , where ρ is the fluid density, g the ac-

∗Research supported by NSF grant DMS-030641

celeration of gravity, V the volume of fluid dis-

placed by the rigid body and k the unit vector

pointing in the direction of gravity. The forces

ϕν = (ϕν1
, ϕν2

, ϕν3
)t and τΩ = (τΩ1

, τΩ2
, τΩ3

)t

account for the control. In the absence of the

restoring,drag forces and momentum the equa-

tions of motion (1) represent a left-invariant

affine-connection control system on the Lie group

SE(3). The inherent nonlinear structure of the

mechanical system can be exploited through ge-

ometric control theory. To begin, we analyze the

rigid body submerged in the xz−plane. The en-

ergy cost we consider is the square of the norm

of the control. Pontryagin’s Maximum Princi-

ple provides information on the structure of the

optimal trajectories. Our goal is to apply nu-

merical methods based on these information. In-

deed, to numerically solve an optimal control

problem (OCP ) we have two broad classes of

methods: indirect or direct. The indirect meth-

ods are based on the application of the maximum

principle and are usually called single or multiple

shooting methods. The direct methods are based

on a rewriting of (OCP ) as a finite dimensional

optimization problem. The main disadvantage of

the direct methods is that they are computation-

ally very demanding since the discretization of

(OCP ) usually yields a large number of param-

eters to optimize (we need N large enough so

that the discretization make sense with respect

to the continuous (OCP )). For this reason we

focus here on indirect method. The single shoot-

ing method does not usually converge for our

problem. However, the multiple shooting method

does. In particular, we provide pairs of initial and

final configurations at rest for which the single

shooting method is unsuccessful but the multiple
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shooting method converges to a solution. Addi-

tionally we discuss the use of symplectic integra-

tors and their impact on the solutions.
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1. INTRODUCTION

In this work we investigate regularity prop-
erties of optimal control for problems with
mixed state-control constraints. To the best
of our knowledge, regularity properties of op-
timal control for such problems have not been
studied previously. We consider on a problem
(Peq) with equality type constraints:

Minimize l(x(1))

+
1
2

∫ 1

0

(
x(t)∗Qx(t) + u(t)∗Ru(t)

)
dt

subject to
ẋ(t) = f(t, x(t)) + B(t)u(t) a.e.

0 = Cx(t) + Eu(t) a.e.
x(0) ∈ C0

and on a problem (Pin) with inequality type
constraints:

Minimize l(x(1))

+
1
2

∫ 1

0

(
x(t)∗Qx(t) + u(t)∗Ru(t)

)
dt

subject to
ẋ(t) = f(t, x(t)) + B(t)u(t) a.e.

0 ≥ Cx(t) + Eu(t) a.e.
x(0) ∈ C0

The data for these problems comprise state
and control variables x : [0, 1] → Rn, u :
[0, 1] → Rk, functions l : Rn → R, f :
[0, 1] × Rn → Rn, B : [0, 1] → Mn×k, ma-
trices Q ∈ Mn×n, R ∈ Mk×k, C ∈ Mm×n,
E ∈ Mm×k and a closed set C0 ⊂ Rn. Here
Mp×q is the set of all p× q matrices with real
entries. We assume that m < k, i.e. that the
number of constraints is less than the dimen-
sion of the control variable.

An important motivation for the study
of regularity of optimal control is that prior
knowledge of its regularity properties (such
as smoothness or Lipschitz continuity) influ-
ences the choice of the most effective approx-
imation scheme for numerical solution of op-
timal control problems. Regularity of opti-
mal control have previously been studied for
problems with state constraints or state con-
straints and pointwise control constraints by,
for example, Galbraith et. al (2003); Hager
(1979); Malanowski (1978); Shvartsman et. al
(2006); Vinter (2000).

In this work we prove that under mild
conditions on the data, optimal control is
infinitely differentiable in the problem with
equality constraints and Lipschitz continuous
in the problem with inequality constraints.

We impose the following hypotheses on the
data of (Peq) and (Pin).

(H1) Function l is locally Lipschitz continu-
ous and f and B are C∞− functions.

(H2) The set C0 is closed.
(H3) The matrices Q and R are symmetric

and R is positive definite.
(H4) The matrix E is of full rank, i.e.

det EE∗ 6= 0.

Crucial to our analysis is the following re-
sult from linear algebra.

Proposition 1.1 If E ∈ Mm×k with m < k

satisfies (H4) then there exist square non-
singular matrices S ∈Mm×m and T ∈Mk×k

such that

SET = [I 0],
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i.e. the left m×m block in the latter matrix is
the identity matrix, and the remaining entries
are zeros.

This result follows easily from the Singular
Value Decomposition Theorem (see, for e.g.,
Theorem 7.3.5 in (Horn et. al, 1985)).

2. MAIN RESULTS

Our main results are the following:
Theorem 2.1 Assume (H1)-(H4). Then the
optimal control ū in (Peq) is a C∞-function.
Theorem 2.2 Assume (H1)-(H4). Then the
optimal control ū to (Pin) is Lipschitz con-
tinuous.

The idea of the proof of both theorems is to
reduce the problem under consideration to a
problem without mixed constraints, and then
to investigate the implications of the Pontrya-
gin Maximum Principle. We illustrate the
aforementioned reduction below.

Let (x̄, ū) be an optimal process to (Peq).
Set

v̄ ≡
[

v̄1

v̄2

]
:= T−1ū, (1)

where v̄1 ∈ Rm, v̄2 ∈ Rk−m and T is from
Proposition 1.1. It can be shown that there
exist functions f̂ , B̂, matrices Q̂, Ŝ and a
positive-definite matrix R̂ of corresponding
dimensions such that (x̄, v̄2) is an optimal
process to the problem (P1):

Minimize l(x(1))

+1
2

∫ 1

0

(
x(t)∗Q̂x(t) + 2x(t)∗Ŝv2(t)

+v2(t)∗R̂v2(t)
)
dt

subject to
ẋ(t) = f̂(t, x(t)) + B̂(t)v2(t) a.e.
x(0) ∈ C0

Observe that (P1) is an optimal control prob-
lem without mixed constraints.

Similarly, let (x̄, ū) be an optimal process
to (Pin). Set

w̄(t) =
[
−Cx̄(t)− Eū(t)

v̄2(t)

]
,

where v̄2 is defined in (1). It can be shown
that (x̄, w̄) is an optimal process to problem

(P2)

Minimize l(x(1))

+1
2

∫ 1

0

(
x(t)∗Q̂x(t) + 2x(t)∗Ŝw(t)

+w(t)∗R̂w(t)
)
dt

ẋ(t) = f̂(t, x(t)) + B̂(t)w(t) a.e.
w(t) ∈ Ω a.e.
x(0) ∈ C0

with

Ω =
{

(w1, w2) ∈ Rm ×Rk−m : w1 ≥ 0
}

for some functions f̂ , B̂ and matrices Q̂, Ŝ and
R̂. Note that problem (P2) does not contain
a mixed constraint, but is a problem with a
control constraint of a simple structure.

3. CONCLUSIONS

In this paper we establish regularity proper-
ties of the optimal control for a simple class of
mixed constrained problems. Proposition 1.1
and the main result in (Shvartsman et. al,
2006) play an important role in the analysis.
We hope to extended Theorem 2.1 and 2.2 to
cover more general problems.

4. ACKNOWLEDGMENTS

The financial support of FEDER and
FCT, Project POSC/EEA-SRI/61831/2004 is
gratefully acknowledged.

REFERENCES

Galbraith, G.N. and Vinter, R.B. (2003): Lip-
schitz Continuiuty of Optimal Controls for State
Constrained Problems. SIAM J. Control and Op-
timization, vol. 42, 1727-1744.
Hager, W.W. (1979):. Lipschitz continuity for
constrained processes. SIAM J. Control and Op-
tim., vol. 17:321–338.
Horn, P.A. and Johnson, C.R. 1985: Matrix
Analysis, Cambridge Press.
Malanowski, K.M. (1978): On the regularity of
solutions to optimal control problems for systems
linear with respect to control variable. Arch.
Auto. i Telemech., vol. 23, 227–241.
Mordukhovich, B.S. (2006): Variational Analysis
and Generalized Differentiation, Springer.
Shvartsman, I. and Vinter, R.B. (2006): Reg-
ularity properties of optimal controls for state
constrained problems with time-varying control
constraints. Nonlinear Analysis, vol 65(2), 448-
474.
Vinter, R. V. (2000): Optimal Control,
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We consider the minimum–time problem for
a single–input affine control system:

minimize T

subject to

ξ̇(t) = f0(ξ(t)) + uf1(ξ(t)) t ∈ [0, T ]

ξ(0) = x̂0 , ξ(T ) = x̂f

|u| ≤ 1

The state space is a smooth n−dimensional
manifold M , x̂0 and x̂f are fixed points and
f0, f1 : M → TM are smooth vector fields; by
smooth we mean C∞.

The aim of the authors is to give second or-
der conditions for a reference normal Pontrya-
gin extremal (T̂ , ξ̂, û) to be a local optimizer in
the strong topology, i.e. with respect to all ad-
missible trajectories whose graph belongs to a
neighborhood of the graph of ξ̂ in R×M , inde-
pendently on the values of the associated control.
We call such a strong optimizer a (time, state)–
local optimizer.

Remark that since we are dealing with a min-
imum time problem, there is also another kind
of strong local optimality, namely if ξ̂ is optimal
among all the admissible trajectories whose range
lies in a range of the range of ξ̂, Ξ̂ =

{
ξ̂(t) : t ∈[

0, T̂
]}

in M , we say that ξ̂ is a state–local opti-
mizer. Remark that any state–local optimizer is a
(time, state)–local optimizer but the two notions
are not equivalent, see (Stefani Zezza, 2003).

The authors faced the problem of state–local
optimality in (Poggiolini Stefani, 2004), when
the extremal is bang-bang, and the problem of
(time, state)–local optimality in (Stefani, 2004),
when the control system is single input and to-
tally singular, and in (Poggiolini Stefani, 2005)
when the system is single–input and the refer-
ence control is the concatenation of a bang arc

and of a singular arc; also we should mention the
papers by different authors who considered the
problem of local optimality for Pontryagin ex-
tremals: (Dmitruk, 1999), (Maurer Osmolovskii,
2002), (Maurer Osmolovskii, 2003), (Sarychev,
1992), (Agrachev et.al, 2002a), (Agrachev et.al,
2002b), (Agrachev Sachkov, 2004).

In this paper we consider a reference control
which is a concatenation of bang and singular
arcs, for simplicity we assume that there is only
one singular arc on the interval [a, b].

The conditions are given through a
coordinate-free second variation which is
obtained by allowing the switching times of
the bang arcs and the singular control to vary.
Applying the Gho transformation (integrations
by parts on the singular arc) we obtain a
quadratic form J” on Rr × R × L2([a, b], R),
where r is the number of the bang arcs.

The main result of the paper is that, under
suitable regularity conditions, the coercivity of
J” is sufficient to prove (time, state)–local opti-
mality.

We underline that this sufficient condition is
”near” the necessary one in usual sense, while the
sufficient condition in (Poggiolini Stefani, 2005)
the condition is stronger. Indeed in the bang-
singular case we need only regularity conditions
on the bang arc and the coercivity of the second
variation along the singular arc for the minimum–
time problem with end–points fixed and equal to
ξ̂(a) and ξ̂(b).
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Let us consider quasilinear control system of
the form

z′′(t) + A(t, u(t))z(t) + αϕ(t, z(t))

= B(t)u(t),

z(0) = v0 ∈ RN , (1)

where t ∈ I := [0,∞), α ∈ R, z(·) ∈
H1

(
I,RN

)
, u(·) ∈ L∞

(
I,RM

)
, A(·, ·) ∈

L∞
(
I × U,RN×N

)
, B(·) ∈ L1

(
I,RN×M

)
,

ϕ(·, ·) ∈ C
(
I × RN ,R

)
, U ⊂ RN , N, M ≥ 1.

On trajectories of system (1) we put integral con-

∫

I
φ(t, z(t)) ≤ l,

where φ(·, ·) ∈ C
(
I × RN ,R

)
. (2)

We consider control system (1-2) with an in-
tegral quality indicator of the form

∫

I
f((z(t), u(t), t)dt → min, (3)

where f : RN × RM × I → R.
We define a space of trajectories as a set of

functions which are absolutely continuous on any
compact interval I0 ⊂ I and which satisfy con-
ditions:∫

I
|z(t)|2dt < ∞ and

∫

I
|z′(t)|2dt < ∞

i.e. z(·), z′(·) ∈ L2
(
I,RN

)
.

The space H1(I,RN ) is a Banach space with
the norm

||z||2 :=
∫

I

(|z′(t)|2 + |z′(t)|2) dt.

One can prove that for a function z(·) ∈
H1(I,RN ) we have

z(∞) := lim
t→∞ z(t) = 0.

Remark 1 Equation (1) is a second order ordi-
nary differential equation. The problem of ex-
istence of solutions to the above equation with
conditions z(0) = v0 and z(∞) = 0 is, in fact,
two-point boundary value problem.

As a set of admissible controls we take

U := {u(·) ∈ L∞
(
I,RM

)
:

u(t) ∈ U for t ∈ I}, (4)

where U ⊂ RM . The fundamental difference be-
tween above optimal control problem (1-4) and
classical optimal control problem is that control
system (1) and functional (3) are defined on un-
bounded time interval.

In the sequel, we shall impose the following
assumptions:

(A1) the matrix A(t, u) is positively-defined for
each t ∈ I and each u ∈ U ,

(A2) the function φ(t, ·) is convex and there are
a constant a1 > 0 and a function a2(·) ∈
L1(I,R), such that

|φ(t, z)| ≤ a1|z|2 + a2(t)

for t ∈ I and z ∈ RN ,
(A3) there is a function z̃(·) ∈ H1(I,RN ) such

that
∫
I φ(t, z̃(t))dt < l,

(A4) there are a constant b1 > 0 and a function
b2(·) ∈ L1(I,R) such that

|f(z, u, t)| ≤ b1|z|2 + b2(t)

for z ∈ RN and t ∈ I .
We have the following
Theorem 1 If Assumptions (A1-A3) are satisfies
and ϕ(t, ·) = ∇φ(t, ·), then for each initial
value v0 and each control u0 ∈ U there are a
constant α0 < 0 and a function z(·, v0, u0) ∈

OPTIMAL CONTROL SYSTEMS WITH CONSTRAINTS DEFINED

straint of inequality-type:
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H1(I,RN ) which is a Caratheodory solution
to the equation (1) with condition (2). More-
over, the above solution is asymptotically sta-
ble in the sense of Lyapunov i.e. for each se-
quence (vk)k∈N tending to v0 in RN and each se-
quence (uk(·))k∈N of controls tending to u0(·) in
L∞(I,RM ), the sequence of solutions zk(·) :=
z(·, vk, uk) tends uniformly to z0 := z(·, v0, u0)
and limt→∞ z0(t) = 0. If the function φ(t, ·) is
positively homogeneous, then

∫
I φ(t, z0(t))dt = l

i.e. equation (1) possesses solution under con-∫
I φ(t, z(t))dt = l

Applying theorem 1 one can prove that opti-
mal control problem (1-4) possesses a solution.

Theorem 2 If control system (1-4) satisfies as-
sumptions (A1-A4), then in the set of admissible
controls U (conf. (4)) there exists an optimal
control.

The results presented above can be extended
to the case of elliptic systems of the form

4z(x) + A(x, u(x))z(x)+

αϕ(x, z(x)) = B(x)u(x),

x ∈ Rn, n ≥ 2, (5)

∫

Rn

φ(x, z(x))dx ≤ l (6)

and cost functional
∫

Rn

f(z(x), u(x), x)dx → min . (7)

The set of admissible control is of the form

U := {u(·) ∈ L∞
(
Rn,RN

)
:

u(x) ∈ U ⊂ RM}. (8)

System (5-8) is considered in the Sobolev
space H1

(
Rn,RN

)
. For system (5-8) one can

prove theorems analogous to the theorems 1 and
2. The most interesting is the case, when n = 3,
M = N = 1, A(x, u) = −u, ϕ(x, z) = z,
B = 0 and φ(x, z) = |z|2. In this case system
(5) is reduced to the scalar elliptic equation of
the form

4z(x)− u(x)z(x) + αz(x) = 0, (9)

with integral condition

||z||2L2(R3,R) =
∫

R3

|z(x)|2dx ≤ 1,

z(·) ∈ H1(R3,R). (10)

Equation (9) is a well-known stationary
Schrödinger equation.

From theorem analogous to theorem 1, it
follows that equation (9) possesses a solution
zu(·) ∈ H1(R3,R) and solution depends contin-
uously on varying potential u(·) ∈ L∞(R3,R).
Moreover,

∫

R3

|zu(x)|2dx = 1

and

α = min
z∈S

∫

R3

(|∇z(x)|2 + u(x)|z(x)|2) dx,

where S := {z ∈ H1(R3,R) :
∫
R3 |zu(x)|2dx =

1}.
The existence of solution to the Schrödinger

equation was proved many years ago by applying
direct variational or topological methods. How-
ever, as far as we know, the result presented
above and concerning continuous dependence of
solutions on varying potential is new.

straint of the form

with integral constraint
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Let us consider the classical optimal control
problem of Bolza:

min J(x, u) =
∫ b

a
L(t, x(t), u(t))dt + l(x(b)),

(1)
where a, b ∈ R, x : [a, b] → Rn is absolutely
continuous function and u : [a, b] → Rm is
Lebesgue measurable function. Both functions:
trajectory x(·) and control u(·) are subject to the
following conditions:

·
x(t) = f(t, x(t), u(t)) a.e. in [a, b], (2)

u(t) ∈ U, t ∈ [a, b], (3)

x(a) = c, (4)

where f : [a, b] × Rn × Rm → Rn, L : [a, b] ×
Rn×Rm → R, l : Rn → R are given, c is point
from Rn. We tell that a pair x(·), u(·) is admis-
sible if it satisfies (2), (3) and t → L(t, x(t), u(t)
is summable.

We assume throughout the paper about L, f

and l that:

(Z)





(a)

(b)

(c)

(t, x, u) → L(t, x, u),
(t, x, u) → f(t, x, u) are
continuous, Lipschitz in x

and bounded on [a, b]× Rn × U ,
x → l(x) is continuous
and bounded in Rn,

U ⊂ Rm is a compact set.

It is well known that in spite of the
above strong assumptions (Z) the problem
(1)-(4) does not have to have a minimizer.
However it is also well known (1) that
the problem (1)-(4) has the value function

S(t, x) = inf
{∫ b

t L(s, x(s), u(s))ds + l(x(b))
}

(where the inferior is taken w.r.t. all admissi-
ble trajectories starting at (t, x) ∈ [a, b] × Rn ,

i.e. x(t) = x), which is Lipschitz continuous.
Even more, the value function satisfies then the
corresponding Hamilton - Jacobi equation

St(t, x) + min
u∈U

{Sx(t, x)f(t, x, u) (5)

+L(t, x, u)} = 0, a.e., S(b, x) = l(x).

However, the converse assertion is not true: not
each solution to (5) is a value function for the
problem (1)-(4). Gonzales (2) proved that S(t, x)
is a maximal element of the set

W =





w(t, x) is lipschitz: w(b, x) ≤ l(x),
Wt(t, x) + min

u∈U
{Wx(t, x)f(t, x, u)

+L(t, x, u)} ≥ 0, a.e





The function (t, x) → Sε(t, x) defined in
[a, b]× Rn we call ε− value function if:

S(t, x) ≤ Sε(t, x) ≤ S(t, x) + ε(b− a),

(t, x) ∈ [a, b]× Rn, l(x) ≤ Sε(b, x)

≤ l(x) + ε(b− a), x ∈ Rn.

It is also well known that there exists a Lipschitz
continuous ε− value function and that it satisfies
Hamilton - Jacobi inequality:

−ε

2
≤ Sεt(t, x) + min

u∈U
{Sεx(t, x)f(t, x, u) (6)

+L(t, x, u)} ≤ 0.

The question which appears here in a natural
way and is very important from numerical point
of view is: Lipschiz function G(t, x) satisfying
(6) and boundary inequality l(x) ≤ G(b, x) ≤
l(x) + ε

2(b− a), x ∈ Rn is an ε− value function
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for problem (1)-(4)? The aim of this note is to
answer for that question in affirmative, i.e. we
prove the following theorem.

Theorem. Each element of the set Wε

Wε = {w(t, x) is lipschitz: l(x) ≤ w(b, x)

≤ l(x) +
ε

2
(b− a), x ∈ Rn;

−ε

2
≤ wt(t, x) + min

u∈U
{wx(t, x)f(t, x, u)

+L(t, x, u)} ≤ 0, a.a.(t, x) ∈ [a, b]× Rn}

is an ε− value function.
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We consider the nonlinear optimization
problem

minimize
x∈X

f(x)

subject to F (x) = 0,
(1)

where f : X → R is a sufficiently smooth
function, and F : X → Y is a sufficiently
smooth mapping from a Banach space X to
a Banach space Y . The focus is on the case
when mapping F is nonregular (degenerate)
at the solution x∗ of optimization problem (1),
that is when the Fréchet derivative F ′(x∗) is
not onto. In this case, the Euler-Lagrange
necessary conditions for optimality,

λ0f
′(x∗) + F ′(x∗)∗ y∗ = 0,

are trivially satisfied with λ0 = 0, and provide
no additional information about solutions of
(1). The development of optimality condi-
tions for nonregular problems has become an
active research topic.

In our previous work, we derived necessary
and sufficient conditions for the constrained
optimization problems that are p-regular at
x∗. Namely, in (1) we derived new opti-
mality conditions for problems with p–regular
equality constraints. In (2) and (3) we pro-
posed necessary optimality conditions for p–
regular problems with inequality constraints.
The main idea of the p-regularity approach
is to replace the operator F ′(x∗) which is
not onto with a linear operator Ψp(x∗), re-
lated to the pth order Taylor polynomial of
F at x∗, which is onto. Moreover, in (1),

we introduced a modified (generalized) condi-
tion of the p–regularity and derived the cor-
responding necessary optimality conditions.
In this talk, we introduce a new generaliza-
tion of the definition of the p-regular map-
pings. The new concept generalizes both the
p-regularity definition and the modified p-
regularity definition introduced in (1). This
generalization allows us to derive optimality
conditions for new classes of nonregular opti-
mization problem (1) that satisfies neither p-
regular nor introduced in (1) modified condi-
tion of p–regularity. To compare our approach
with others, we can note that Ledzewicz and
Schättler (4; 5) use the terminology p–regular,
but in different sense. Furthermore, some
problems that satisfy the generalized condi-
tion of p–regularity could not be treated using
the approach presented in (4; 5).

The following theorem gives necessary con-
ditions in the completely degenerate case
when F (k)(x∗) = 0, k = 1, . . . , p− 1, for some
p ≥ 2, but the mapping F is not p-regular at
x∗, that is F (p)(x∗)[h]p−1 · X 6= Y for some
specially chosen vector h ∈ X. To state the
theorem, we introduce the generalized defini-
tion of p-regularity.
Theorem 1. Let X and Y be Banach spaces,
f ∈ C2(X → R) and F ∈ Cp+1(X → Y ). Let
x∗ be a solution of optimization problem (1)
such that F (k)(x∗) = 0 for k = 1, . . . , p − 1,
p ≥ 2. Assume that there exist elements h1

and h2 in X such that Y = Y1⊕. . .⊕Yp, where
Yk = cl ( Im(PkF

(p)(x∗)[h1]p−k[h2]k−1)) for
k = 1, . . . , p, P1 is a projector onto Y , and
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for k = 2, . . . , p, Pk is a projector onto
Y \(Y1⊕. . .⊕Yk−1) along (Y1⊕. . .⊕Yk−1) with
respect to Y . Let the mapping fk(x) be defined
by fk(x) = PkF (x), k = 1, . . . , p. Assume
that for the linear operator Ψ = Ψ(h1, h2),
defined by

Ψ = f
(p)
1 (x∗)[h1]p−1 + f

(p)
2 (x∗)[h1]p−2[h2]

+ . . . + f (p)
p (x∗)[h2]p−1,

the following generalized p-regularity condi-
tion holds:

Ψ ·X = Y. (2)

Assume also that Ψ · h1 = 0 and Ψ · h2 = 0.
Then there exists a multiplier λ∗ ∈ Y ∗ such
that

f ′(x∗) +
(
f

(p)
1 (x∗)[h1]p−1

+ f
(p)
2 (x∗)[h1]p−2[h2]

+ . . . + f (p)
p (x∗)[h2]p−1

)∗
λ∗ = 0.

In Theorem 1, we use two vectors h1 and
h2. In the next theorem we use vectors
h1, . . . , hq ∈ X with q ≥ 1, and consider the
case of p = 2 with F ′(x∗) = 0.

We assume again that the space Y is de-
composed into the direct sum

Y = Y1 ⊕ . . .⊕ Yq,

but with a different definition of Yk and a defi-
nition of the projector P̄k similar to definition
of Pk given in Theorem 1. Namely, we define
Yk = cl (ImP̄k(F ′′(x∗)[hk]), k = 1, . . . , q.

Theorem 2. Let X and Y be Banach spaces,
f ∈ C2(X → R) and F ∈ C3(X → Y ). Let
x∗ be a solution of optimization problem (1)
such that F ′(x∗) = 0. Assume that there ex-
ist vectors h1, . . . , hq in X (q ≥ 1), such that
hk 6= 0, k = 1, . . . , q, and for the mappings
fk(x) = P̄kF (x) the following generalized 2-
regularity condition holds:

(f ′′1 (x∗)[h1] + . . . + f ′′q (x∗)[hq]) ·X = Y, (3)

where
f ′′k (x∗)[hk+r, hk+p] = 0,

for k = 1, . . . , q, r = 0, . . . , (q − k), and
p = 0, . . . , (q − k − r). Then there exists a
multiplier λ∗ ∈ Y ∗ such that

f ′(x∗) + (f ′′1 (x∗)[h1] + f ′′2 (x∗)[h2]

+ . . . + f ′′q (x∗)[hq])∗λ∗ = 0.

Remark. Condition (3) with q = 1 re-
duces to the 2-regularity condition in the com-
pletely degenerate case F ′(x∗) = 0.

In addition to necessary conditions given in
Theorem 1 and 2, we also present new suffi-
cient conditions of optimality for problem (1)
which constraints satisfy a generalized condi-
tion of p-regularity (2) or (3).
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1. PROBLEMS IN NORMED
SPACES

Let X and Y be normed spaces, let 
 be an
open subset of X, S � 
, �x 2 S, and let
D � Y be a cone (containing 0). The cone
D de�nes order in Y ; we do not suppose D
is convex, pointed, or closed. B(x; �) denotes
the open ball with center x 2 X and radius
� > 0, N (x) is the family of all neighborhoods
of x, and dist(x;W ) is the distance from the
point x to the set W � X. The symbols clS
and bdS denote, respectively, the closure and
the boundary of S.
Given a function f : 
! Y , the following

abstract multiobjective optimization problem
is considered:

min ff(x) : x 2 Sg : (1)

De�nition 1 Let m � 1 be an integer. We
say that �x is a weak sharp local Pareto
minimizer of order m for (1), denoted �x 2
WSL(m; f; S), if there exist � > 0 and U 2
N (�x) such that

(f(x) +D) \B (f(�x); � distm(x;W )) = ;
(2)

for all x 2 S \ UnW , where

W := fx 2 S : f(x) = f(�x)g :

Under the assumption that D is closed,
convex and pointed, De�nition 1 is equivalent
to De�nition 8.2.3 in Bednarczuk (2006). In
particular, if Y = R and D = [0;+1), then
(2) reduces to

f(x)� f(�x) � � distm(x;W );

which gives the well-known de�nition of a
weak sharp local minimizer of order m for

(1); see Studniarski and Ward (1999). On the
other hand, ifW = f�xg in De�nition 1, we ob-
tain the de�nition of a strict local Pareto min-
imizer of order m for (1); see Jiménez (2002),
De�nition 3.1.
The following results are generalizations of

Proposition 3.4 and 3.5 in Jiménez (2002).
Proposition 1 �x =2WSL(m; f; S) if and only
if there exist sequences xk 2 SnW , dk 2 D,
such that xk ! �x, dist(xk;W ) > 0 for all k,
and

lim
k!1

f(xk)� f(�x) + dk
distm(xk;W )

= 0:

Proposition 2 Let Y = Rp and D = Rp+ =
[0;+1)p. Then the following conditions are
equivalent:
(i) �x =2WSL(m; f; S);
(ii) there exist a vector �d 2 [�1; 0]p and

a sequence xk 2 SnW such that xk ! �x,
dist(xk;W ) > 0 for all k, and

lim
k!1

f(xk)� f(�x)
distm(xk;W )

= �d:

2. PROBLEMS IN FINITE-
DIMENSIONAL SPACES

In this section we consider problem (1) in
the case where X = Rn, Y = Rp and D =

Rp+. We now introduce a variant of the Mor-
dukhovich normal cone.
De�nition 2 (Studniarski, 1999) Let E and
S be subsets of Rn, and let �x 2 clE. The
normal cone to E at �x relative to S is de�ned
by

NS(E; �x) := fy 2 Rn : 9yk ! y, xk ! �x,

tk 2 (0;+1), wk 2 Rn with xk 2 S,
wk 2 P (E; xk) and yk = (xk � wk)=tk (8k)g;
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where

P (E; x) := fw 2 clE : kx� wk = dist(x;E)g

is the metric projection of x onto E.
Remark 1 (i) If S = Rn, then NS(E; �x) is
equal to to the Mordukhovich normal cone to
E at �x (see Mordukhovich, 2006, Vol. I, p.
8):

N(E; �x) := fy 2 Rn : 9yk ! y, xk ! �x,

tk 2 (0;+1), wk 2 Rn with wk 2
P (E; xk) and yk = (xk � wk)=tk (8k)g:

(ii) If E = f�xg, then NS(E; �x) is equal to
the well-known contingent cone to S at �x:

K(S; �x) := fy 2 Rn : 9yk ! y, xk ! �x,

tk 2 (0;+1) with xk 2 S
and yk = (xk � �x)=tk (8k)g:

De�nition 3 Let E be a nonempty closed
subset of Rn, and let ' : Rn ! R. For
x 2 bdE and y 2 Rn, de�ne

�dmE'(x; y) := lim sup
bdE3w!x
(t;v)!(0+;y)

'(w + tv)� '(w)
tm

:

(In particular, (x; y) is an allowable choice of
(w; v).) For m = 1, we will write �dE'(x; y)
instead of �d1E'(x; y).
Theorem 3 Suppose that W is closed. If �x 2
WSL(m; f; S), then, for each y 2 NS(W; �x)

with kyk = 1, there exists i 2 f1; :::; pg such
that

�dmW fi(�x; y) > 0:

For weak sharp local Pareto minimizers of
order one, a necessary condition can be for-
mulated in terms of Clarke�s generalized di-
rectional derivative; see Clarke (1983). Re-
call that, for a locally Lipschitzian function
' : Rn ! R, this derivative is de�ned by

'�(x; y) := lim sup
(t;w)!(0+;x)

'(w + ty)� '(w)
t

:

Proposition 4 Let E be a nonempty closed
subset of Rn, and let ' : Rn ! R be locally
Lipschitzian. Then, for any x 2 bdE and
y 2 Rn, we have

'�(x; y) � �dE'(x; y):

Corollary 5 Suppose thatW is closed. If �x 2
WSL(m; f; S), then, for each y 2 NS(W; �x)

with kyk = 1, there exists i 2 f1; :::; pg such
that f�i (x; y) > 0:
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Food supply networks (FSN) are currently con-
fronted with a lot of challenges. They have to 
cope with expanding and open international 
markets with increasing competition, with more 
demanding customers, retailers and NGO’s, 
with increased legal demands and requirements, 
with new technologies that ‘call’ to be used, 
with increased vulnerability in case of food 
problems and calamities. The latter is even 
aggravated by increased transparency. Food 
problems are published in our media, almost on 
a daily bases. These problems can jeopardize the 
very existence of products on the market and of 
the companies producing them. The nature of 
these problems may have to with various 
aspects, such as food quality, operations, or 
logistics. For example, chickens may die before 
their arrival at the slaughter house and or have 
quality attributes that are not in compliance with 
requirements defined for quality slaughtered 
products. A similar situation with respect to 
quality deviations may exist in the pork chain. 
The weight and quality of pigs arriving at the 
slaughter house may not satisfy defined require-
ments. For example the bacon quality of the 
pigs is of great importance if you want to 
produce for the British market. Further products 
may not have the right quality, or even be conta-
minated with (toxic) substances. These 
problems thus cause potential losses to the food 

industry and may cause that the trust in the food 
system decreases. In order to diminish these 
losses, it is necessary to predict potential 
problems in FSN as early as possible and 
thereafter to take proactive actions to prevent 
those problems or correct their effects. 
However, specific characteristics of FSN make 
it difficult to find out causes and take corrective 
action in time when problems occur, especially 
when domain knowledge is missing. Fortunate-
ly, the rapid development of information sys-
tems in FSN provides us with opportunities to 
find valuable information from recorded data.   

In our research, we are aiming at building early 
warning and proactive control systems in FSN 
in order to effectively and efficiently control 
problems in FSN. They enable managers to 
exploit recorded data by employing various Data 
Mining (DM) methods to find causes of 
problems and predict potential problems based 
on the status of current FSN. It also collects 
knowledge obtained in real cases into a know-
ledge base for managers’ reference.  

In this paper, we present a framework for early 
warning and proactive control system in FSN. 
This framework is built upon our experience in 
dealing with problems in real cases. It contains 
knowledge on both content and process aspects 
for applying DM methods to deal with problems 
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in FSN. We provide a process model to 
illustrate the processes for managers to utilize 
this framework. This process model takes 
manager’s resources into consideration. It helps 
managers to take advantage of their knowledge 
and resources while using this framework. For 
each step of those processes, we also provide 
information on prerequisites, outcomes, and 
evaluation criteria in order to ensure that 
managers arrive at appropriate and usable 
solutions. 

The framework consists of the following 
components: user interface, knowledge base, 
task classifier and template approaches, DM 
method library, and a predictor. The knowledge 
base is designed to incorporate the knowledge 
about existing problems in FSN together with 
their causes, and utilized DM methods. This 
knowledge base provides essential knowledge 
sources for managers to deal with real problems 
in FSN. Managers can either browse the know-
ledge base for causes of problems or use 
appropriate Data Mining methods to analyze 
collected data for causal factors. After that, they 
can predict potential problems and take timely 
actions to prevent losses. Since some of those 
steps require managers to apply specific know-
ledge on Data Mining, we provide multiple tem-
plate approaches to guide managers through 
these steps. For example, in order to do pre-
diction, a manager has to find proper methods, 
set proper parameters, interpret the outcome of 
algorithms, and fine-tuning settings in order to 
get optimal results. Template approaches for 
prediction are needed here to serve as guidelines 
for managers executing these steps. 

Detailed explanations of each component are 
given in this paper, together with the relations 
between them, and how managers cooperate 
together with them for early warning and 
proactive control of problems in FSN. 
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Nowadays, there is a trend to establish new 
business linkages and alliances within the 
shipping industry together with customers, 
suppliers, competitors, consultants, and other 
companies. A number of studies have attempted 
to explain this phenomenon occuring in the liner 
shipping industry using a variety of conceptual 
and theoretical frameworks. This paper focuses 
on liner shipping´s strategic alliances and their 
establishment and transformation within the 
framework of cooperative and non-cooperative 
game theory. The concepts developed and 
improved by Nash, Selten and Harsanyi should 
be considered as effective and capable tools to 
analyse motivations, competitive structures, 
strategies and potential pay-offs in a turbulent 
liner shipping industry. 

Not only a liner shipping company could be 
regarded as a player in shipping alliance, but 
also a liner shipping strategic alliance itself 
could be viewed as a player as well when it 
competes with other alliances. However, in this 
paper, we pay more attention to the former 
model assuming those liner companies are 
unable to make enforceable contracts through 
outside parties. The aims of this paper are to 

1)  indicate the motivations of short-run 
cooperation among several liner carriers;  

2)  analyse pros and cons of being members in 
liner shipping strategic alliances; 

3)  explain the departure of a player when it 
faces turbulence and unpredictable shipping 
circumstances 

4)  advise ways to contain long-run alliance´s 
stability by increasing benefits while 
decreasing drawbacks.  

Among those four main points, the differences 
between short term cooperation and long term 
alliance are the amounts of sub-games and the 
potential pay-off in future. Consequently, we set 
up specific models based on non-cooperative 
games and repeated games to give those 
differences clear explanations. The outcome of 
this paper shall be helpful for those liner 
shipping carriers who attempt to succeed in the 
shipping industry with greater efficiency, better 
customer service and lower cost. 
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In many engineering disciplines, the use of
realistic computing models has become an in-
valuable tool in the design process. Complex
simulation codes are able to approximate the be-
havior of intricate systems or the properties of
components without the need for costly physical
experimentation. Optimization algorithms can be
used to automatically find the set of parameters
within the design space for which the simula-
tion promises the most desirable characteristics.
However, there are several challenges that must
be met to successfully apply this technique to
real-world problems.

First, the objective function to be minimized
(or maximized) is given only implicitly and a
time-consuming simulation is necessary to cal-
culate its value for a given set of parameters.
Thus, almost no assumptions can be made about
this function, which will often be highly non-
linear and multimodal. Furthermore, there are
usually a number of constraints that divide the
design space into feasible and infeasible regions
of unknown geometry. Derivate information is
typically not provided by the simulation codes,
and due to numerical noise, the objective func-
tion might also be non-smooth. These character-
istics make it very hard to apply some classical
methods such as gradient-based approaches. A
class of optimization algorithms that can be used
are so-called direct search methods (1).

Each solution candidate generated by the op-
timization algorithm must be evaluated, hence
necessitating the execution of a time-consuming
simulation. Despite the increase of computing
power, typical runtimes of a single simulation
still span from a few minutes to many hours.
This is caused by the demand for larger mod-
els, greater accuracy, and the adoption of coupled

multiscale and multiphysics simulation codes (2).
During the course of the optimization, hundreds
or thousands of evaluations are necessary, result-
ing in very long runtimes. Two common ap-
proaches to decrease the time needed are the
use of surrogate functions (3) and paralleliza-
tion. Since the computation time spent within the
optimization algorithm itself is several orders of
magnitude lower than the time needed for a single
simulation, it is useless to introduce parallelism
to the internal operations of the algorithm. In-
stead, the goal is to design the algorithm in a
way that allows it to utilize the results of many
simulations that can be run simultaneously and
independently of each other.

In this paper, eight such parallel direct search
methods for simulation-based optimization prob-
lems are examined. Most of them are based on
well-known sequential search methods and were
modified to exploit parallel computing resources:

• Distributed Polytope Search (4) applies ge-
ometric operations to a set of points in the
search space to generate new solutions. Infea-
sible solutions are repaired by moving them
towards the center of gravity.

• Parallel Scatter Search (5) is a parallel im-
plementation of the well-known scatter search
meta-heuristic.

• Asynchronous Parallel Pattern Search (6) is a
pattern search method with the unique prop-
erty of asynchronous parallel operation.

• Simulated Annealing (7) is a parallel vari-
ant of the classical SA method which uses a
stochastic, temperature-dependant acceptance
function to avoid getting stuck in local min-
ima.
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• Great Deluge Algorithm (8) is similar to SA
but uses a different acceptance function based
on a flood level.

• Particle Swarm Optimization (9) simulates a
swarm of particles moving through the search
space and attracting each other.

• Genetic Algorithm (10), an incarnation of the
bioinspired search method for real-valued de-
cision variables.

• Evolution Strategies (11) are closely related to
GA but add the concept of so-called strategy
parameters, which enable self-adaptation of
the search strategy.

Some of the algorithms generate a sufficient
number of new solution candidates per iteration
in their original, sequential form and are thus
easily extended to make use of parallel compu-
tation. Others, like Distributed Polytope Search,
differ significantly from the algorithm they have
been derived from. Furthermore, some of the al-
gorithms can also operate in asynchronous mode,
meaning that further operation is not suspended
until all pending simulations have finished. This
is especially important in a heterogenous com-
puting environment where the runtimes of the
simulations vary significantly.

Advances in the area of service-oriented ar-
chitectures (12) and grid computing (13) make it
easier to use resources beyond geographical and
organizational boundaries, theoretically enabling
even small companies to utilize many thousands
of CPUs on demand. However, the problem of
licensing still limits the use of commercial sim-
ulation software in these environments. Thus,
while most of the observations will also apply
to large scale computing, the paper focuses on
degrees of parallelism of up to a few hundred
CPUs – typical of compute clusters or enterprise
grids.

The algorithms were used to solve several
real-world problems in different engineering dis-
ciplines. This includes sheet metal forming and
optimization of metal alloy casting processes in
the automotive industry, and facility optimiza-
tion in groundwater management. Results are
presented for both a test function as well as two
problems from industrial practice. The compu-
tational experiments were performed on a 300

CPU Linux Opteron cluster. While the test func-
tion allows for an extensive examination of the
algorithms’ performance over a wide range of
utilized CPUs and different problem dimensions,
the simulation-based optimization problems in-
dicate the relevance of the contribution to non-
academic tasks.
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 ABSTRACT 
 
The focus of "model-related-work" at the 
Deutsche Post Chair of Optimization of 
Distribution Networks is the elaboration of 
optimization models and solution approaches for 
Distribution Systems in Postal Logistics and 
Supply Chain Design. There are 4 main classes 
of optimization problems in this area of 
application:  
 

 facility location,  
 location routing,  
 service network design and  
 vehicle routing and scheduling 

problems.  
 
The main characteristics of the models 
developed in the field of Postal Logistics and 
SCM are: 

 
-   Most of the optimization problems are 

NP-hard (the exceptions are known of course). 
-  Problem instances are "large to very large 
scale". 
-   Special structures are present (e.g. 

patterns of constraint types). 
 
Concluding exact methods are successful in 
special cases or smaller instances only, 
commercial solvers can not deal with the very 
large scale real world applications in a 
reasonable way. Therefore, the world of 
heuristics and meta-heuristics complemented by 
high quality lower bounds (for minimization 
problems) seems to be the only possible 
approach to solve the real world problems. 
 
It appears that the elaboration of the "appropriate 
model" is not only science but has also some 
similarity with art because of the implicit 

knowledge an expert in the field owns. For 
example, there are many important design 
decisions a person who elaborates a model has to 
make depending on the answers to the following 
questions: 
 
-  Why the model is needed and which are the 

reasons to use it? (to describe the problem 
quantitatively and to classify it, to check 
feasibility of solutions which have been 
generated  without using the model, to prove 
properties of optimal solutions, to prove 
properties of algorithmic approaches, to 
generate solutions model-based?) 

 
-  What type of model fits best the respective 

problem description? (optimization vs. 
simulation, analytical model, knowledge-
model, static or dynamic model, dealing with 
uncertainty within the model?) 

 
- Which kind of solution methods and respective 

solvers are available and for which type of 
instances they can be used successfully (LP, 
MIP, NLP, heuristics or meta-heuristics, 
commercial or public domain, available on the 
web?) 

 
Within the presentation we will propose a 
modeling environment which helps a human 
model developer to use the expert knowledge 
about the respective domain and the expert 
knowledge about the modeling process as well. 
Such an modeling environment does not exist 
today. But, today it seems to be possible to 
design and to implement such an environment by 
integrating knowledge based methods (expert 
systems technology) and techniques dealing with 
analytical (e.g. algebraic) models of the type 
"simultan models of Operations Research".There 
is a need to restrict the domain and therefore we 
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will focus on the field of "Facility Location" 
problems which are very important in the 
strategic planning phase of the applications 
mentioned above. We will outline the domain 
knowledge in this field and illustrate why it is so 
important to implement the experts knowledge 
about models, their properties, the respective 
solvers and also external expert knowledge 
about desired properties of solutions which can 
not be formulated within the analytical models. 
Also,we will illustrate our approach using a 
Facility Location problem in Postal Logistics. 
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Model management was built upon database 
theory and the data management paradigm. This 
was too limiting in many respects and 
responsible for the eclipse of the discipline, as 
data management became an increasingly fami-
liar commodity. Yet, modeling is more instru-
mental in scientific inquiry than even 20 years 
ago, and more properly belongs in the context of 
knowledge management. Viewing it from this 
perspective, we contend that model management 
research was in many respects ahead of its time 
and still provides a wealth of important research 
issues when recast in the contemporary organiz-
ational and technological landscape. 

We update the static, management control-
oriented term model management and adopt 
instead the term model evolution to describe the 
dynamic nature of the modeling lifecycle and its 
relationship to organizational decision-making. 
Our objective is to cast model evolution as a 
pillar of knowledge dynamics in an effort to 
revitalize this area of information science 
research. We see the differentiating forces of 
next generation model management as 
complexity, distributed computing, and infor-
mation science.  

We note the increased role of modeling and 
simulation in the role of scientific inquiry, and 
briefly chart the historical trajectory of model 
management research. The singular focus on 
model representation therein tried to parallel the 
development of database theory, but was not as 
successful due to the polymorphic and dynamic 
nature of analytical models, especially 
simulations. We recognize the continuing rele-
vance of model management research, especial-
ly in the fields of Semantic Web and service-

oriented architectures, which are grappling with 
the same ontological semantics and model 
composition problems that we addressed in 
studying model integration.  

We then view model management through the 
lens of knowledge management, in particular as 
an instrument for knowledge flow and 
dynamics. Modeling is truly much more about 
knowledge than just data. Modeling, done 
properly, conveys knowledge that was perhaps 
previously latent or hidden. For example, 
conceptual modeling of an information system 
in the form of Entity-Relationship or UML 
diagrams facilitates knowledge flow between 
users and analysts: the users are forced to 
articulate their mental models, so that analysts 
may design a computer executable model of 
those views. A decision model illuminates a 
larger area of the search space than otherwise 
would be possible given human cognitive limits, 
which may, in turn, allow a decision-maker to 
evaluate more effectively a larger set of 
alternatives.  

We summarize principles and practices of 
knowledge dynamics such as communities of 
practice, tacit vs. explicit knowledge (we 
eschew “tacit” in favor of “hidden” and 
“latent”), open source knowledge bases, col-
laborative technology, and people-oriented vs. 
technology-driven solutions, and set out to 
establish value propositions and identify 
relevant research streams in this vein.  

Characterizing the next generation model 
management as knowledge dynamics leads us to 
consideration of two other phenomena and their 
impact upon model evolution research: 
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complexity as an emergent process, and 
computational modeling and experimentation. 
The contemporary view of complexity as an 
emergent process has resulted in a dynamic, 
bottom up, agent-based approach to modeling 
that stands in contrast to the more static top 
down approach historically characteristic of 
OR/MS analytical modeling. The success of 
computational modeling and experimentation, 
particularly in the area of agent-based modeling 
and simulation, has helped us analyze social 
phenomena such as organizations, economies, 
and societies which were previously the 
bailiwick of primarily qualitative approaches. 

We discuss emerging application domains for 
which next generation model management is 
well-suited. These include services science, 
management and engineering (SSME), 
contemporary supply chain management, alter-
native energy sources, and emergency response 
systems. Semantic web and web services are 
two undertakings of extreme interest which are 
very amenable to model evolution approaches. 

We conclude by suggesting a conceptual 
framework for model evolution research, and 
enumerating some dimensions of an associated 
research agenda. 
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The paper addresses testbed for experimental 
modeling of decision support and collaborative 
processes in tactical network-centric operations.  
This project, supported by partners from 
Lawrence Livermore National Laboratory, 
USSOCOM, Sweden, Austria, and Singapore is 
based on the NPS Tactical Network Topology 
(TNT) testbed, comprised of long-haul OFDM 
networks combined with self-forming wireless 
mesh links to radiation detection sensors, and 
real-time radiation awareness collaboration with 
geographically distributed experts. The case-
study conducted by the NPS team during the 
Summer of 2006 included Maritime Interdiction 
Operation (MIO), High-Value Target (HVT) 
tracking, and Emergency Response coordina-
tion scenarios, in which geographically 
distributed command centers and subject matter 
experts collaborate to facilitate situational 
understanding and course of action selection.  

The  paper is focused on the findings of the 
Maritime Interdiction Operation, which is the 
most representative scenario for exploring 
globally distributed collaboration between the 
boarding party taking place in San Francisco 
Bay area, expert teams on the East Coast, and  
friendly sites overseas, including Sweden, 
Austria, and Singapore. 

The objective of these experiments is to 
evaluate the use of networks, advanced sensors, 
and collaborative technology for conducting 
rapid MIOs.  Specifically, the ability of a 
boarding party to rapidly set up ship-to-ship 
communications that permit them to search for 
radiation and explosive sources while 
maintaining contact with the mother ship, 

command and control organizations, and to 
collaborate with remotely-located sensor 
experts.  The boarding team boards the suspect 
vessel and establishes a collaborative network 
and then begins their respective inspections and 
data collection processes.  The boarding officer 
boards the vessel with his laptop so he can 
collaborate with all other members of the team.  
This includes those who are located on the ship, 
but are physically spread out around different 
areas of the ship (while searching for contraband 
material and obtaining fingerprints of crew 
members), as well as the virtual members of the 
boarding team – the experts who are located at 
the different reach back centers. Since there are 
numerous commercial uses for certain radio-
active sources, positive identification of the 
source in a short time is imperative. There is 
also pressure to conduct the MIO quickly so as 
to not detain the ship any longer than necessary.  

During the study NPS students observed 
communication processes of geographically 
distributed teams and were able to position 
collaborative process in the decision making 
space of  Simon’s problem solving model, 
Boyd’s OODA Loop, and Alberts and Hayes 
Collaborative C2 model. The results show high 
fidelity of Alberts and Hayes’ Collaborative C2 
model and reveal the requirements to collabor-
ative network topology as well as multi-
participant team structure. 

The results also include observations on the 
frequency of transactions and the usage patterns 
of major collaborative tool functions. They are 
enhanced by the recommendations of how to 
combine the best elements of the three decision 

293



     

support models for better mapping of tactical 
collaborative process. 

The described testbed provides several 
layers of interfaces for integrating new models, 
tools, and experimentation procedures needed 
to conduct experimental modeling of decision 
support and collaboration in tactical network-
centric operations.   
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Virtual prototyping (concurrent product and process optimization) in manufacturing gains more and 
more importance, since companies competing on the market noticed the increasing cost pressure alongside 
higher quality requirements. The utilization of virtual prototyping techniques provides an opportunity to 
reduce the total development costs and the time to market, while simultaneously innovations of both 
products and its production processes increase the overall quality of the manufactured parts. The monetary 
effort and the lack of know-how especially in small and medium sized enterprises (SME) which is 
required to operate such systems lead to a disadvantage in the more and more globalized market.  

The paper states the problem of supporting virtual prototyping processes in the manufacturing industry 
(by the example of casting and sheet metal forming processes in the German automotive supplier industry) 
and gives a solution approach by utilizing service-oriented architectures and concepts from grid 
computing. A pilot implementation of the proposed architecture is introduced and evaluated by case 
studies (in simulation, optimization and clash-analysis) in both manufacturing (casting and sheet metal 
forming) domains.  
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ABSTRACT 

 
Motivated by recent emergence of diverse 
micro-theories of knowledge creation, the paper 
addresses the question of justification and 
testing of such theories. Because of the observed 
divergence of the episteme of three cultural 
spheres: that of technology, of hard and natural 
sciences, and of social sciences and humanities, 
we present a review of the ways of testing tools 
and theories in these different spheres. 
Implications concerning testing interdisciplinary 
and philosophical theories are presented. A 
review of theoretical results obtained in the 21st 
Century COE Program Technology Creation 
Based on Knowledge Science is presented. Their 
testing results and future testing needs conclude 
the paper.  

The necessity of a better, more detailed 
understanding of knowledge creation processes 
in the knowledge based economy for the needs 
of today and tomorrow resulted recently in the 
emergence of many micro-theories of 
knowledge creation, as opposed to classical 
concentration of philosophy on macro-theories 
of knowledge creation on a long term historical 
scale. Historically, we could count the concept 
of brainstorming as first of such micro-theories. 
However, since 1990 we observe many such 
new micro-theories originating in systems 
science, management science and information 
science, beginning with the Shinayakana 
Systems Approach, the Knowledge Creating 

Company and the SECI Spiral, the Rational 
Theory of Intuition, the I5 (Pentagram) System, 
the OPEC Spiral and several others. This can be 
counted as a recent revolution in knowledge 
creation theories, because all of them take 
explicitly into account an interplay of tacit, 
intuitive, emotive, and preverbal aspects with 
explicit or rational aspects of knowledge 
creation.  

Additional results concerning micro-
theories of knowledge creation were obtained 
also in the 21st Century COE Program 
Technology Creation Based on Knowledge 
Science at the Japan Advanced Institute of 
Science and Technology (JAIST). For example, 
the brainstorming process was represented as the 
DCCV Spiral due to the research in this 
Program. The concept of Creative Space 
developed in this Program tries to provide a 
synthesis of such diverse micro-theories. The 
concept of the Triple Helix of normal academic 
knowledge creation combines three spirals: the 
Hermeneutic EAIR Spiral of analysing and 
interpreting scientific literature, the 
Experimental EEIS Spiral of performing 
experiments and interpreting their results, and 
the Intersubjective EDIS Spiral of debating and 
discussing research results; these three spirals 
characterize main creativity processes at 
universities and research institutions. The idea 
of Nanatsudaki Model of Knowledge Creation 
Processes tries to derive pragmatic conclusions 
from such analysis and synthesis, by combining 
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seven spirals (objective setting OPEC, herm-
eneutic EAIR, socializing SECI, brainstorming 
DCCV, debating EDIS, roadmapping I-System, 
and experimenting EEIS) in an order useful for 
organizing large research projects. 

With all this concentration on describing 
diverse mechanisms or models of knowledge 
creation processes, a critical question arises: 
how to test, to justify by testing, such micro-
theories of knowledge creation? The standards 
of testing theories belong to the episteme – the 
prevalent way of creating and justifying 
knowledge, characteristic for a given historical 
era or a cultural sphere. However, the episteme 
of the industrial civilization, called sometimes 
the modern episteme, was subjected to a 
destruction process, particularly visible in the 
last fifty years. This has lead to a divergent 
development of separate episteme of three 
cultural spheres: that of social sciences and 
humanities, that of hard and natural sciences, 
and that of technology: they use different 
languages, but more important is the fact that 
they use different fundamental epistemic 
concepts and different ways of constructing and 
justifying knowledge.  

We present here also an attempt to propose 
a new integration of the episteme, much needed 
in the beginning era of knowledge civilization. 
This integration is based on three principles: 
evolutionary falsification principle (an exten-
sion of Popperian falsification towards an 
evolutionary perspective of human development 
of knowledge in long term historical sense); 
emergence principle (stressing that new 
properties of a system emerge with increased 
levels of complexity, and these properties are 
qualitatively different than and irreducible to the 
properties of its parts, strengthening and going 
beyond synergy and holism); and multimedia 
principle (stressing that words are just an 
approximate code to describe a much more 
complex reality, visual and preverbal 
information in general is much more powerful 
and relates to intuitive knowledge and 
reasoning; the future records of the intellectual 
heritage of humanity will have a multimedia 
character, thus stimulating creativity). Going 
beyond the concept of a paradigm, we also 
stress the fundamental role of a hermeneutical 
horizon, an intuitive meta-environment 
concerning the truth of basic axioms: to have a 
strictly formal language one needs a formal 
metalanguage, to have a formal metalanguage 
one needs a formal meta-metalanguage, and so 
on – an infinite recursion; thus, the only 
possible way is to stop and study fundamental 
assumptions in a non-formal, intuitive meta-
environment. 

However, the issue of testing knowledge 
creation theories deserves special attention, thus 
we devote this paper mainly to diverse issues of 
testing such theories. We conclude that testing 
of interdisciplinary and philosophical theories, 
in particular – knowledge creation theories - 
should thus include: 

a) A description and critical review of their 
relation to the relevant parts of the intellectual 
heritage of humanity, with logical and 
hermeneutic tests of the validity of such relation 
(paradigmatic validity, if applicable, but not 
necessarily, since interdisciplinary and 
philosophical theories should be above 
paradigms); 

b) A design of critical experiments, if such 
are possible, aimed at checking whether the 
tested theory provides essential new insights; 

c) A design of descriptive experiments, if 
the theory has descriptive character, aimed at 
checking whether the tested theory describes 
reality accurately; 

d) Cases of applications, if the tested theory 
allows for prescriptive conclusions, aimed at 
checking whether applications confirm expected 
impacts of prescribed actions. 

No theory can be fully tested – particularly 
if it is of social science character; but this should 
not prevent us from testing theories as diligently 
as possible. We present in this paper not only 
recent theories of knowledge creation developed 
in the 21st Century COE Program Technology 
Creation Based on Knowledge Science and 
indicated above, but also examples of their 
testing. 
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1. INRODUCTION AND MOTIVATION 

 
Modern multiservice network routing 
functionalities have to deal with multiple,  
heterogeneous and multifaceted QoS (Quality 
of Service) requirements.  This led to routing 
models the aim of which is the calculation and 
selection of one (or more) sequences of 
network resources (designated as routes, 
which correspond to loopless paths in the 
network representation) satisfying certain QoS 
constraints and the optimisation of route 
related metrics.  Therefore there are potential 
advantages in formulating important routing 
problems in these types of networks as 
multiple objective optimisation problems.  
These enable the trade-offs among distinct 
QoS parameters  and relevant network cost 
function(s) to be pursued in a fully consistent 
manner. It should be noted that the 
specification of the objective functions and 
constraints depend strongly on the nature of 
the considered routing principles, the type of 
technological platform used by the network 
and the features of the offered traffic flows 
associated with different service types.  

In the emergent MPLS (Muliprotocol 
Label Switching) technology for the Internet  
it is possible the implementation of 
connection-oriented services from origin to 

destination. This is feasible by using LSRs 
(Label Switching Routers) that forward the 
packets  (grouped in Forward Equivalence 
Classes, FECs), through LSPs (Label Switched 
Paths) in the network using a specific label 
switching technique. This in association with 
other functional capabilities of MPLS enables 
the implementation of advanced QoS-based 
routing mechanisms, namely by establishing 
“explicit routes” (determined at the originating 
node) for each traffic flow of a given FEC.  

Having in mind these features and 
capabilities of MPLS routing a significant 
number of routing models have been proposed 
in the literature in recent years. These 
approaches often differ in key instances of the 
modelling framework. In particular such 
differences are concerned with: i) the scope of 
the routing optimisation  (where we may 
distinguish network-wide optimisation models 
and flow-oriented models); ii) the nature of the 
optimisation model in terms of the objective 
function(s) and constraints  (single/multi-
objective, type of QoS-related or other 
constraints, etc); iii) the level of representation 
of the traffic flows (representation at the level 
of micro-flows of packet streams carried on a 
certain LSP or at the level of the “traffic 
trunks”-aggregation of traffic flows of the 
same class placed on the same LSP). Based on 
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the analysis of the remarkable differences 
observed in the models proposed in this area, a 
discussion on key conceptual issues involved 
in the various modelling approaches and a 
proposal of a generic hierarchical multi-
objective network-wide routing optimisation 
framework, was presented in [Craveirinha, et. 
al, 05]. The possibility of applying this 
modeling framework to a MPLS type network, 
by considering two service classes , namely 
QoS service (with guaranteed QoS –quality of 
service levels), treated as a first priority 
service and Best Effort service (carried on a 
‘best effort’ basis, seeking not to jeopardize 
the QoS of QoS traffic flows), treated as a 
second priority service, were the major 
motivation for this work. 
 
 

2. CONTENTS OF THE PAPER 
 
This work presents, in detail, a model for 
multiobjective routing in MPLS networks 
formulated within the framework developed in 
[Craveirinha, et. al, 05], assuming that there 
are two classes of services (and different types 
of traffic flows in each class), namely QoS and 
Best Effort (BE) services. The flows of QoS 
type, when accepted by the network, have a 
guaranteed QoS level, related to the required 
bandwidth, while BE traffic flows, which are 
treated in the model as second priority flows, 
are carried by the network in order to obtain 
the best possible QoS level for the current 
network routing solution.   

Other feature of the routing model is the 
use of alternative routing: when a first choice 
route assigned to a given micro-flow, 
belonging to a certain traffic flow 
(corresponding to a “traffic trunk”) is blocked 
a second choice route may be attempted.  An 
important characteristic of this model is the 
use of hierarchical optimisation typically with 
two optimisation levels, including fairness 
objectives: the first priority objective functions 
refer to the network level objectives of QoS 
type flows, namely the total expected revenue 
and the maximal value of the mean blocking 
of all types of QoS flows; the second priority 
objective functions refer to performance 
metrics for the different types of QoS services 
and the total expected revenue associated with 
the BE traffic flows. Another important feature 
of the model is the use of an approximate 
stochastic representation of the traffic flows in 
the network, based on the use of the concept of 
effective bandwidth for macro-flows and on a 
generalised Erlang model for estimating the 
blocking probabilities in the arcs, as the one 

used in [Martins, et al., 2006].  After 
describing in detail the routing model, 
including the underlying traffic model, we will 
present the theoretical foundations of a 
specialised heuristic strategy for finding 
“good” compromise solutions to the very 
complex bi-level routing optimisation 
problem. This theoretical foundation is based 
on a conjecture concerning the definition of 
marginal implied costs for QoS flows and BE 
flows, which is an extension and adaptation of 
earlier definitions of implied cost for mono-
service networks with alternative routing in 
[Kelly, 88]. The structure of the heuristic 
procedure for resolving the problem is 
analogous to the one described in detail in 
[Craveirinha, et. al, 04] and [Martins et al., 
2006] and is based on a constrained bi-
objective shortest path model the objective 
functions of which are QoS or BE marginal 
path implied costs, depending on the class of 
the routed traffic, and path blocking 
probabilities. A description of the main 
features of a first version of this heuristic will 
be presented. Also preliminary results 
obtained with the application of this heuristic 
to a test network used in a benchmarking study 
on network-wide routing optimisation with 
MPLS, will be revealed. Finally conclusions 
and further work on this model will be 
outlined. 
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1 Introduction

It is very effective in education to force reports to the students and/or small
tests from time to time, and especially so if we check them within a few days
and return our comments. However, we usually cannot do that due to our tight
schedule. It consumes huge amount of time to check the reports or tests of more
than 100 students for one course.

As the PCs and the computer network environment become popular, it be-
comes realistic to use them for education. We are trying to use a computer
network for this kind of educational purpose.

In some problems, private lesson is the best way for education. Actually,
some e-learning systems are designed for private lessons. But it is not always
useful. The students usually talk over the lessons each other and this seems very
effective for them to understand and teach each other. Hence we are developing
a teaching support system for mass-education.

Teaching Support System is equipped with real-time processing of the an-
swers entered by students. The students can know the scoring of their respective
answers in real time.

We also need to develop a system to grade the students based on the scores
obtained by the Teaching Support System. It can treat the elements of the
scores from the view-point of multi-criteria decision making (MCDM).

2 Teaching Support System

Our teaching support system consists of the following sub-systems.
∗The author wish to express his sincere thanks to S. Adachi for the assist of developing

the teaching support system.
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• Report System

• Small Test System

The report system (RS) accepts free-style text-based sentences, not selec-
tion problems. The tutor marks the submitted reports from the web browsers,
and the students can see the scores and comments on the PC screen.

The small-test system (ST) consists of further sub-systems. The first
sub-system (ST-SS1) is based on the selection buttons, and the tutor inputs the
problems and their correct answers in advance. The second sub-system (ST-
SS2) is also based on the selection buttons, but the problems are not entered.
They are spoken in the lecture. This system is expected to increase the attention
of the students. The third one (ST-SS3) is free-style description style.

3 Evaluation System

To use the scores of the reports and tests for tutoring purpose, we will ex-
tract various indices for multi-criteria evaluation. Our goal is to give students
appropriate advices for study as well as deciding the final grade of the course.

The grades of courses of Konan University are the follows; AA (Super Ex-
cellent), A, B, C and D (Fail), and K (No attendance). The task of giving
one index from many scores is usually done by summing up the scores of small
tests with weights (large weights for a large test). This abstraction procedure
is largely linked to the multi-criteria decision making problem.

The various variables to be used for decision making are to be computed
from the raw data, and the following items will be included in them: attendance
times, delay times for submission, average scores for each category (report, and
small test), etc.

Our system uses the weighted sum. The objective functions can be designed
arbitrary by using the available variables. It is the same for the constraints. The
final grading system will be decided by the tutor by various trials of grading.

The obtained system can be used in other ways for other purposes. It will be
useful if we can see the difference of the students by their feature of scoring. We
will apply Self-Organizing Map (SOM) for this purpose. SOM automatically
shows us a map of the data on 2D plane based on the similarity of the high-
dimensional data.

The order of the students can be decided by this MCDM setting, but we
won’t be able to see the difference of their features. Here we will develop a SOM
to see the similarity and/or difference between students. SOM will make a link
between the ranking by the MCDM framework and grouping of the students.
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1. ABSTRACT 
 
The paper presents an approach to support 
decisions of supermarket managers 
concerning the preparation of fresh food 
dishes for current sale. While the real life 
problem is quite complex – the decisions of 
preparing fresh food dishes can be made 
adaptively through entire day of sales, some 
of fresh food dishes made in the evening 
can be stored until next day – we analyze 
here only a simplified problem of preparing 
beforehand a production plan of fresh food 
dishes for entire day. However, even such 
simplified problem has diverse methodo-
logical implications. These implications 
concern: the way of analyzing significant 
factors for demand prediction, the method 
of actual demand prediction, as well as the 
prediction of variability of demand and risk 
analysis including at least two asymmetric 
criteria of opportunity losses and for losses 
of food to be disposed, the method of 
multiobjective decision support for fresh 
food dishes production managers. We 

present in the paper a discussion of several 
aspects and approaches to address such 
methodological issues. 
 
Simple demand prediction is not the full 
answer, because even if the supermarket 
making fresh food packages prepares a 
production plan equal to the demand 
prediction, it can still have losses because of 
variability of demand. The losses might 
result either of excess unsold products, or of 
the unused opportunities and unsatisfied 
customers that could not buy food because 
actual demand turned out to be higher than 
predicted. These losses are each of different 
character: it is easier to dispose of unsold 
food than to attract back unsatisfied 
customers, and the problem is whether the 
production plan should be slightly higher – 
and how much higher – than the demand 
prediction. Therefore, the problem is 
actually the prediction of variability of 
demand followed by multiple criteria (at 
least two criteria, but other aspects can be 
also taken into account) decision support of 
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the production manager. There are two 
parts of support:  

• supporting the preparation of the 
production target or plan (it might 
include production targets for several 
products); shortly called production 
plan preparation; 

• supporting the modifications of the 
production targets, if the actual 
demand differs much from the 
predicted one; shortly called 
production plan modifications. 

We consider the practical case where only 
“hard” data on production and sales are 
available. We should thus take into account 
that data on sales underestimate actual 
demand if there were no losses due to food 
disposal (no remaining stocks of food) at the 
end of the day. We can count as directly 
relevant for demand and variability 
predictions only such days when there were 
food disposal losses (remaining stocks) at 
the days’ end. However, there are diverse 
ways of unsold food disposal (preserving 
stocks of fresh food in refrigerators for a 
limited period of time is usually a viable 
option) that provide possibilities of adaptive 
minimization of losses of food to be 
disposed. Moreover, even if a certain type 
of fresh food is all sold out, the management 
can mark the time when it happens and 
estimate how large was the unsatisfied 
demand this day. Thus, all sales contain 
relevant data for demand estimation, they 
must be only appropriately interpreted, with 
active involvement of experienced 
management personnel. 

To solve the problem presented above, we 
propose a new approach based on risk 
management and estimated probability 
distributions; we assume the following 
steps:  

• a prediction of the demand,  
• a prediction of the variability of 

demand,  
• an application of the data on both, but 

particularly on variability, for decision 
support.  

In the first step we concentrate on demand 
prediction. In our approach we support this 
phase by an analysis of a questionnaire 
survey aimed at managers of food 

processing. The goal of this introductory 
analysis is to explore on which aspects and 
elements the managers usually focus when 
making their production decisions. The 
knowledge from questionnaire survey is 
extracted by a technique of text mining. 
This type of analysis helps in finding 
important factors that should be considered 
when solving prediction problem. For 
example, it might be detected that the 
managers concentrate in their planning 
process on diverse regional and traditional 
national events, such as viewing cherry 
blossoms. Therefore, we can apply event 
based prediction of the desired level of 
production. 

Concerning the variability, we assume the 
availability of statistical data on demand 
(appropriately upgraded if the fresh food 
was sold out) and the estimation of the 
probability distribution of demand, either in 
the form of an empirical histogram or its 
analytical approximation (by a normal or 
lognormal probability distribution).  

For the decision support, we are considering 
two criteria: 

• the value of lost food (unsold food that 
must be disposed of due to an 
overestimation of demand), say, 
measured as % of sales (either of total 
sales or of this particular type of food-
box) and denoted by s; 

• the value of lost opportunity of selling 
food (food not sold due to 
underestimation of demand – actually, a 
better index would be the number of 
unsatisfied customers, of cases that the 
customer does not find what she/he 
wants,  but it is difficult to measure the 
actual number of customers), say, also 
measured as % of sales and denoted by q. 

We assume that practical computations will 
be based on histograms of data. Let us use 
the following notation: 
�d = (dup – dlo)/n, where dup is the upper 

bound, dlo – the lower bound of 
demand estimation, n is the 
number of equal size intervals in 
the histogram, thus �d is the 
length of such interval; 

n(pt) = (dup – pt)/�d is the number of 
such intervals above the 
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production target pt (in which 
opportunity losses might occur); 

m(pt) = (pt - dlo)/ �d is the number of 
such intervals below the 
production target pt (in which 
losses of food to be disposed 
might occur). 

 
Then the expected loss of opportunity of 
sales q given the production target pt can be 
denoted by E(q,pt) and the expected loss of 
food to be disposed given the production 
target pt can be denoted by E(s,pt); 
according to the definition of expected 
value, they can be computed as: 
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and similarly: 
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where dlo=dlo, dup=dup, and pi = p(qi) is the 
probability density in the interval 
[pt+i�d; pt+(i+1) �d] or pi= p(si) is the 
probability density in the interval 
[pt -i�d; pt -(i+1) �d] of the histogram 
(simply the probability density in the 
corresponding interval of the histogram). 
 
When using expected values of losses, we 
can be certain that they are monotone with 
respect to the changes of pt: E(q,pt) 
monotonically decreases with pt and E(s,pt) 
monotonically increases with pt. The larger 
the interval dup – dlo, the higher will be 
expected losses - of both types, although the 
essence of the decision support here is first 
to give the decision maker enough 
information for making a compromise 
between these two types of losses.  
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Fig. 1 The graph of the values of losses of 
opportunity of sales and of losses of 
disposed unsold food for number of samples 
equal to 200 

 
Fig. 1 shows an example of the the graph of 
the values of losses of opportunity of sales 
E(q,pt) (pt – is a production target) and of 
losses of disposed unsold food E(s,pt). The 
equal values of E(q,pt) and E(s,pt) are 
around 495. The presented graph can be 
considered a tool for decision support. It can 
be used in two modes: for interactive 
decision making and in the process of 
decision automation. In the second case the 
user can provide additional preferences. It 
can be observed that such graph can be 
calculated even if histograms are based on a 
small amount of data.  

 

E(q,pt) 

E(s,pt) 

304



MULTICRITERIA DECISION SUPPORT FOR PROBLEMS WITH
NUMEROUS AND STRUCTURED CRITERIA

Bartosz Kozlowski∗ and Wlodzimierz Ogryczak∗∗

Warsaw University of Technology, Institute of Control & Computation Engineering, 00-665 Warsaw, Poland
e-mails: B.Kozlowski@elka.pw.edu.pl and W.Ogryczak@ia.pw.edu.pl

Keywords: multicriteria optimization, decision support, reference point method, numerous structured criteria

1. PROBLEM

This paper elaborates on how to deal with multi-

criteria decision problems characterized by struc-

tured criteria. This problem is not new but no

satisfactory solution procedure is known. For

instance, in the case of discrete set alternatives

with large number of criteria the AHP approach

was utilized but no solution was found which

properly addresses numerous criteria of different

kinds (Solnes, 2003).

Let a set of decision alternatives D be

known (either finite or infinite given implicitly

by constraints) on which there is a defined set

C of criteria numbered by i (i ∈ I; I =

{1, 2, ..., i, ..., I}). Each criterion ci ∈ C (C =

{c1, c2, ..., ci, ..., cI}) assigns a real value to each

of decision alternatives, ci : D → R. Criteria are

are organized in a multilevel hierarchy H. Values

of those ci which correspond to end nodes in the

hierarchy are known. For all other nodes there is

a need to define respective ci functions. Indeed,

for each criterion ci from set of decision alterna-

tives known for each of Ji existing subordinate

nodes, that is of the form c′i : D → RJi , where

c′i(d) = (cj1(d), cj2(d), ..., cjJi
(d)), d ∈ D, it is

necessary to convert to the form ci : D → R.

Performing the above defined task requires ac-

quiring for each node (those which have subordi-

nate nodes) a solution in ”its” multicriteria space

and presenting to the stakeholder to obtain guide-

lines considering preferences of the DM (deci-

sion maker).

∗ Partially done within the IME Project in IIASA, Lax-

enburg, Austria.
∗∗Partial financial support from The Ministry of Sci-

ence and Information Society Technologies under grant

3T11C 005 27.

2. REFERENCE POINT METHOD

The Reference Point Method (RPM) is an interac-

tive technique implementing the so-called quasi-

satisficing approach to multiple criteria deci-

sion problems developed mainly by (Wierzbicki,

1982) as the reference point method. The refer-

ence point method was later extended to permit

additional information from the DM and, even-

tually, led to efficient implementations of the

so-called aspiration/reservation based decision

support (ARBDS) approach with many success-

ful applications (Lewandowski and Wierzbicki,

1989). The basic concept of the interactive

scheme is as follows. The DM specifies re-

quirements in terms of reference levels, i.e.,

by introducing reference (target) values for sev-

eral individual outcomes. Depending on the

specified reference levels, a special scalarizing

achievement function is built which may be di-

rectly interpreted as expressing utility to be maxi-

mized. Maximization of the scalarizing achieve-

ment function generates an efficient solution to

the multiple criteria problem. The computed ef-

ficient solution is presented to the DM as the

current solution in a form that allows compari-

son with the previous ones and modification of

the reference levels if necessary.

The RPM is based on the so-called augmented

max-min aggregation of individual achievements,

i.e. the worst individual achievement is essen-

tially maximized but the optimization process is

additionally regularized with the term represent-

ing the average achievement. This simple scalar-

ization function performs very well for the lim-

ited number of criteria while deserving special

reconstruction to take into account the multilevel

structure of criteria.
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3. RPM FOR NUMEROUS AND

STRUCTURED CRITERIA

The concept of the solution process gets down to

(iterative) execution of following tasks:

Algorithm 3.1: rpmnsc( )

for each node


if node has subordinate nodes

then mark it as active

else mark it inactive

repeat

for each node with all subordinates active


establish function ci (based on subordinate

criteria, multicriteria methodologies, and

interaction with a user)

mark all subordinate nodes as inactive

mark processed node as active

until no node with active subordinates exists

Appropriate identification of the preferences

of the DM is a critical aspect of an optimization

problem. The optimal solution is useless (some-

times even maleficent) if preferences of DM have

been badly identified. In case of big number of

criteria, the method identifying preferences has

to consider limited time and patience of DM. Es-

pecially, that it has to be done for every non-end

node separately. Free choice of method has to

be limited to these, which save the DM a work-

load. One of such methods might be identifica-

tion of DM’s preferences based on ’sample’ of

DM preferences and the approximation prefer-

ences on set of all possible decision alternatives.

In addition ’sample’ itself should be prebuilt as

much as possible on objective preference points

(obtained without DM participation) to allow for

a DM to point out his own preferences against the

background of these objective ones in a relatively

easy way. In other words, the method should de-

fine some rational solutions and its criteria val-

ues (objective satisfaction levels) and next should

identify DMs opinion concerning points between

those levels. Based on objective satisfaction lev-

els and DM points, the approximation of prefer-

ences on the whole set of decision alternatives

is possible to be done. Proposed method sug-

gests usage of typical RPM achievement func-

tions based on aspiration and reservation levels

(Granat et.al., 2006) as well as a novel concept of

the solidarity point. What is important is that the

method can be used on every level of hierarchical

structure criteria.

Further, the regularization by the average

achievement is easily implementable but it may

disturb the basic max-min model in the case of

large number of criteria. The only consequent

regularization of the max-min aggregation is the

lexicographic max-min (nucleolar) solution con-

cept where in addition to the worst achievement,

the second worst achievement is also optimized

(provided that the worst remains on the opti-

mal level), the third worst is optimized (provided

that the two worst remain optimal), and so on

(Ogryczak, 2006). Although within the multi-

level criteria structure rather an analytic approx-

imation to the nucleolar regularization must be

used.

In this work we focus on a case study which

deals with alternatives from energy technologies

domain characterized by economic, environmen-

tal, and social criteria. Two separate sets of alter-

natives are considered in this work. The first con-

sists of about 50 general technology alternatives.

The second one contains ca. 50 so called sys-

tem expansion scenarios combining these tech-

nologies. It also is quite possible that by the

way of specifying preferences stakeholder points

restrictions which will appear to be a basis for

definition of a new scenario. In general case

process is iterative not only as it comes to spec-

ifying preferences but also in redefining the set

of alternatives.

REFERENCES

Solnes, J. (2003): Environmental quality indexing of
large industrial development alternatives using AHP.
Environmental Impact Assessment Review, vol. 23
(3), 283–303.

Granat, J., M. Makowski and A.P. Wierzbicki
(2006): Hierarchical Reference Approach to Mul-
tiple Criteria Decisions and Objective Ranking.
IIASA, Laxenburg, 2006.

Lewandowski, A. and A.P. Wierzbicki (1989): As-
piration Based Decision Support Systems – Theory,
Software and Applications. Springer, Berlin.

Ogryczak, W. (2006): Nucleolar reference point
method. The 18th International Conference on Mul-
tiple Criteria Decision Making MCDM 2006.

Wierzbicki, A.P. (1982): A Mathematical Basis for
Satisficing Decision Making. Mathematical Mod-
elling, vol. 3, 391–405.

306



MULTICRITERIA ANALYSIS FOR PROBLEM SOLVING:
OPPORTUNITIES, PITFALLS, CHALLENGES

M AREK M AKOWSKI

International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria
marek@iiasa.ac.at, http://www.iiasa.ac.at/ ∼marek

Keywords: Multicriteria optimization, model-based decision-making support

1. CONTEXT

In any rational analysis of a complex problem the
choice of a method is of critical importance be-
cause it predetermines to a large extent the scope
(and in most cases the correctness) of analysis.
Each analysis method is based on specific as-
sumptions and supports only a certain type of
analysis. A selected method must fit to the prob-
lem characteristics and the desired scope/features
of analysis. This trivial observation is however
often forgotten. Hammond, Keeney and Raiffa
(2006) summarized the hidden traps in decision
making and provided yet another guidelines for
decision-making which in turn amplifies the prin-
ciples of modern decision making discussed e.g.,
by Wierzbicki and Wessels (2000).

Policy makers and almost all industrial com-
panies, research, educational and other organiza-
tions are faced with problems of finding a best
compromise between conflicting goals, such as
costs versus performance and reliability of prod-
ucts and technologies, and the time to bring them
to the market, life-time costs versus environmen-
tal impacts, or economic growth versus intergen-
eration fairness of a pension system, spatial and
temporal allocation of costs of climate change
mitigation versus ex ante and/or ex post risk man-
agement. Making rational decisions for any com-
plex problem requires various analyses of trade-
offs between conflicting goals (objectives, out-
comes) that are used for measuring the results of
applying various decisions in a wide range of ap-
plication domains. Therefore multicriteria model
analysis is a relevant and powerful tool for sup-
porting rational decision-making. However, every
powerful tool can either greatly help or hurt de-
pending on either proper or improper implemen-
tation and use. Whether multicriteria analysis will

provide opportunities or pitfalls for rational prob-
lem solving depends on a proper match between a
model representation of the decision problem and
the selected method(s) of model analysis.

There are countless successful applications
of diverse multicriteria analysis methods, see
e.g., (Wierzbicki, Makowski and Wessels, 2000).
However, there are new applications, e.g.,
(Makowski, Granat, Schenler and Hirschberg,
2006), which require developments of new meth-
ods.

2. OPEN CHALLENGES

Wierzbicki (1977) proposed one of the most suc-
cessful methodology for multicriteria analysis,
namely scalarizing functions. Actually, as shown
by Makowski (1991), basic properties of each
of the most commonly used multicriteria meth-
ods can be analyzed by examination of the cor-
responding scalarizing function. We will use
this powerful methodology to discuss the chal-
lenges of the problem specified by Makowski et
al. (2006), to which none of the known meth-
ods1 can be successfully applied, see (Granat and
Makowski, 2006) for the justification.

Two key challenges will discussed in more de-
tail. First, is due to the large number (about 50)
of criteria organized in a hierarchical structure. It
is commonly agreed, see e.g., (Miller, 1956), that
humans are able to process only several issues at
a time. Therefore a new approach is needed for
analysis of problems characterized by large num-
ber of criteria. The second challenge is caused
by the multimodal distributions of criteria val-

1A new approach currently under development will be
presented by B. Kozłowski and W. Ogryczak in the same
session of the 23rd IFIP TC 7 Conference.
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ues which causes many problems with applica-
tions of methods successful in analysis of prob-
lems having more regular distributions of criteria
values, e.g., aspiration-reservationbased multicri-
teria analysis by Granat and Makowski (2000).

3. CONCLUSIONS

Rational decision making is always based on a
combination of knowledge, experience, and in-
tuition. Models can represent a relevant part of
knowledge, and appropriate methods of model
analysis augment experience and intuition in the
decision making process. However, one should
never forget that there is no simple solution for
any problem, which is truly complex. Thus
a well organized modeling process can substan-
tially help in finding better solutions but actu-
ally the final choice is always made by a deci-
sion maker. Development of models for com-
plex problems does, and will, require various el-
ements of science, craftsmanship, and art (see,
e.g. (Makowski and Wierzbicki, 2003) for a col-
lection of arguments that supports this statement).
This presentation aims at contributing to a better
understanding of open challenges that need to be
addressed in order to successfully support the new
class of decision problems currently analyzed for
supporting European energy policy-making.

ACKNOWLEDGMENTS

Several ideas exploited in the paper have re-
sulted from many (over the period of more than
20 years) discussions and joint activities of the
author with J. Granat and A.P. Wierzbicki. The
current collaboration includes also B. Kozłowski
and W. Ogryczak as well as S. Hirschberg and
W. Schenler. The author gratefully acknowledges
all these contributions, but he assumes the sole re-
sponsibility for the content of this paper.

REFERENCES

Granat, J. and Makowski, M.: 2000, In-
teractive Specification and Analysis of
Aspiration-Based Preferences,European J.
Oper. Res.122(2), 469–485. available also
as IIASA’s RR-00-09.

Granat, J. and Makowski, M.: 2006, Multicriteria
methodology for the NEEDS project,Tech-

nical report, International Institute for Ap-
plied Systems Analysis, Laxenburg, Austria.
(report for the EU Project NEEDS; restricted
distribution).

Hammond, J., Keeney, R. and Raiffa, H.: 2006,
The hidden traps in decision making,Har-
vard Business Review84(1), 118–126.

Makowski, M.: 1991, Selected issues of de-
sign and implementation of decision support
systems,Working Paper WP-91-16, Interna-
tional Institute for Applied Systems Anal-
ysis, Laxenburg, Austria. Available on-
line from http://www.iiasa.ac.at/
˜marek/pubs .

Makowski, M. and Wierzbicki, A.: 2003, Mod-
eling knowledge: Model-based decision
support and soft computations,in X. Yu and
J. Kacprzyk (eds),Applied Decision Support
with Soft Computing, Vol. 124 of Series:
Studies in Fuzziness and Soft Computing,
Springer-Verlag, Berlin, New York, pp. 3–
60. ISBN 3-540-02491-3, draft version
available from http://www.iiasa.
ac.at/˜marek/pubs/prepub.html .

Makowski, M., Granat, J., Schenler, W. and
Hirschberg, S.: 2006, Requirement analysis
for WP9 of NEEDS RS2b,Technical report,
International Institute for Applied Systems
Analysis, Laxenburg, Austria. (report for the
EU Project NEEDS; restricted distribution).

Miller, G.: 1956, The magical number seven, plus
or minus two: Some limits on our capacity
for processing information,The Psychologi-
cal Review63, 81–97.

Wierzbicki, A.: 1977, Basic properties of
scalarizing functionals for multiobjective
optimization, Mathematische Operations-
forschung und Statistik, s. Optimization
8, 55–60.

Wierzbicki, A. and Wessels, J.: 2000, The mod-
ern decision maker,in Wierzbicki et al.
(2000), pp. 29–46. ISBN 0-7923-6327-2.

Wierzbicki, A., Makowski, M. and Wessels, J.
(eds): 2000,Model-Based Decision Support
Methodology with Environmental Applica-
tions, Series: Mathematical Modeling and
Applications, Kluwer Academic Publishers,
Dordrecht. ISBN 0-7923-6327-2.

308



     

 
 
 
 
 
 
 

 
OBJECTIVE CLASSIFICATION OF EMPIRICAL PROBABILITY 

DISTRIBUTIONS AND THE ISSUE OF EVENT DETECTION 
 
 

Janusz Granat1,2, Andrzej P. Wierzbicki3,1 
 
 

1National Institute of Telecommunications, Szachowa 1, 04-894 Warsaw, Poland  and 
2Warsaw University of Technology, Faculty of Electronic and Informational Sciences, 00-665 

Warsaw, Poland, J.Granat@itl.waw.pl 
3Japan Advanced Institute of Science and Technology (JAIST), Asahidai 1-1, Nomi, Ishikawa 923-

1292 Japan, A.Wierzbicki@itl.waw.pl 
 

Keywords: objective classification, event detection, multicriteria analysis. 
 
 

 

                                                
 
 
 

ABSTRACT 
 
While practically all multiple criteria ap-
proaches to decision analysis and support 
concentrate on rationally supporting subjective 
decisions, depending on some form of an 
elicitation of preferences of the decision maker, 
there are diverse decision situations where we 
should suggest decisions that are made as 
objectively as possible; the full objectivity is not 
attainable for many practical and philosophical 
reasons, but objectivity can be seen as an useful 
ideal or goal. Examples of such situations are, 
on the one hand, managerial decisions 
influencing many stakeholders, when an 
aggregation of preferences of stakeholders is 
impossible. On the other hand, such situations 
occur also in event detection; e.g., when 
automatically detecting a case of fire, we should 
not make decisions based on subjective, 
personal preferences. We shall call the problem 
of supporting decisions in such a case the 
problem of objective classification (treating 
problem of ranking as a special case with 
singleton classes and the problem of decision 
selection and detection as special cases with 
classes selected – not selected or detected – not 
detected). We can define objective classification 

as dependent only on a given set of data, 
relevant for the decision situation, and 
independent from any more detailed 
specification of personal preferences than that 
given by defining criteria and the partial order in 
criterion space. Already in this definition, we 
see the limits to objectivity, because naturally 
the definition of criteria and their partial order, 
or of the relevant set of data, can be treated as 
subjective; however, they are often much more 
obvious and easy to agree upon than the detailed 
preferences defined, e.g., by a utility function or 
a set of weighting coefficients. 

Most of classical approaches to multiple criteria 
decision analysis and support, e.g., based on 
weighted sum aggregation, are not easily 
adaptable to the case of objective classification. 
From known approaches, either the goal 
programming or the reference point approaches 
are easily adaptable, because goals or reference 
points can be defined reasonably objectively 
from statistics in a given set of data. We 
concentrate here on reference point approaches, 
because they have the property of producing 
always Pareto optimal options (which is not the 
case in goal programming). The paper reviews 
the properties of reference point approaches 
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which make them useful for objective 
classification.  
The paper concentrates on the issue of 
classification of empirical probability distri-
butions (histograms), which is useful both in 
management situations and in event detection or 
event mining. While existing approaches to 
event detection concentrate on the use of 
selected moments or other characteristics of 
empirical probability distributions, we postulate 
that full empirical distribution preserves more of 
needed information then selected moments of 
this distribution, thus multiple criteria 
classification of distributions can be most 
effective in event detection. One of advantages 
of reference point approaches is that they easily 
deal with so-called multiobjective trajectory 
analysis and optimisation; this can be applied to 
issues of stochastic dominance and their 
generalisations needed for multiple criteria 
event detection based on classification of 
empirical probability distributions. The paper 
presents also examples of classes of practical 
event detection problems in which such 
formulation is useful. 
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1. INTRODUCTION  

 
In this paper we study the following linear vec-
tor optimization problem: 

( ){ }XxCxxF ∈= :Max n ,         (P) 
where 

{ }0xbAxRxX ≥≤∈= ,:k  is the feasible set; 
and 

( ) ( ) ( ) )n,...,1i(,,...,F ki
TTnT1n =∈⎥⎦

⎤
⎢⎣
⎡= Rcxcxcx

(n>1) is a vector-valued function. Each  
 is called an objective function. 

Problem (P) consists to find all the solutions 
that are efficient in the sense of the follow-
ing definition. 

if
( n,...,1i =

     

)

Definition 1.1. A vector  is said to be an 
efficient (Pareto-optimal) solution of problem 
(P) if and only if there exists no  such that 

X0 ∈x

X∈x
( ) ( )⇔≥ 0nn xFxF  

{ } ( ) ( ) { } ( ) ( ).ffn,..,1iffn,..,1i 0
ii

0
ii xxxx >∈∃∧≥∈∀

The set of efficient solutions of problem (P) is 
denoted by  n

EX .
We form a new vector optimization problem 
(P’) adding an objective function  to prob-
lem (P). If the set of efficient solutions of prob-

lem (P) equals that of (P’), then the objective 
function  is said to be nonessential. 

1nf +

1nf +

Information about nonessential objectives gives 
insights to a decision maker and helps to under-
stand better the problem. This might be a good 
starting point for further investigations or revi-
sion of the mathematical model. Dropping non-
essential functions leads to a problem with a 
smaller number of objectives, which then can be 
solved more easily. For this reason, the identifi-
cation of nonessential objectives is an important 
issue to be used in conditioning and analysis of 
multiple criteria programs (Gal and Hanne, 
1999, 2006; Malinowska, 2002). 
In this paper we put together two methods (Gal 
and Leberling, 1977; Malinowska, 2006) for 
determining nonessential objective functions. A 
computational implementation is done using the 
computer algebra system Maple. The outline of 
the paper is as follows: in Sec.2 we develop the 
theory of nonessential objectives. Section 3 is 
devoted to the main result of the paper: the algo-
rithm to determine if a given objective function 
of a linear problem is essential or nonessential. 
Finally, we provide some examples that show 
the applicability of our methodology and the 
convenience of the developed computer soft-
ware. The paper ends with some conclusions. 
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2. NONESSENTIAL OBJECTIVES 
 

Let  denote the set of solutions of the 1n
EX +

problem  
( ){ }XxxCxF ∈=+ :'Max 1n ,   (P’) 

where . ( ) ( ) TT1nT1 ,...,' ⎥⎦
⎤

⎢⎣
⎡= +ccC

Definition 2.1. The objective function  is 
said to be nonessential in (P’) if .  
An objective function which is not nonessential 
is called essential. 

1nf +
1n

E
n
E XX +=

Theorem 2.2. (Gal and Leberling, 1977) The 
objective function  is nonessential in (P’) if 
the following holds: 

1nf +

( )∑
=

+ =≥αα=
n

1i
i

i
i

1n n,...,1i,0,cc . 

Theorem 2.3. (Malinowska, 2002). Let the set 
 be nonempty and bounded. The objective 

function  is nonessential in (P’) if, and only 
if, the following three conditions hold: 

X
1nf +

(i) ; ( ) ( )xFxFXxXXx 1n1nn
E ''\ ++ ≥∈∃∈∀

(ii) , where  ∅≠∩ +1n
n
E XX

( ) ( ){ }xxXxXxX 1n
0

1n
0

1n ff: +++ ≥∈∀∈= ; 
(iii) . 1n

E
n
E

+⊂ XX
 
 

3. MAIN RESULT  
 

The theory in the previous section enables us to 
work out a computational algorithm to test if an 
objective function of a linear problem is essen-
tial or not. The algorithm can be summarized by 
the following steps: 

Step 0. Is there  ? If the 

answer is “TRUE”, then the objective function 
 is nonessential by Theorem 2.2. Otherwise 

we go to Step 1. 

∑
=

+ ≥αα=
n

1i
i

i
i

1n )0(,cc

1nf +

Step 1. Is there { } ∅=≥∈= 0uCRu ':'U k ? If 
the answer is "FALSE", then  and we 
go to Step 2. Otherwise we know that condition 
(i) of Theorem 2.3 holds and we go to Step 5. 

XX 1n
E =+

Step 2. Does { } ∅=≥∈= 0CuRu :U k ? If the 
answer is "FALSE", then  and function 

 is nonessential. Otherwise we go to Step 3. 
XXn

E =

1n

Step 3. Does 
f +

∅≠Xint ? If the answer is 
"TRUE", then , and the objective func-
tion  is essential. Otherwise we go to Step 4. 

XX n
E =

1nf +

Step 4. Does ? If the answer is 
"FALSE", objective function  is essential. 
Otherwise  is nonessential. 

XX =n
E

1nf +

1nf +

Step 5. Does ? If the answer is 
"TRUE", then condition (ii) of Theorem 2.3 
holds and we go to Step 6. Otherwise the objec-
tive function  is essential. 

∅≠∩ +1n
n
E XX

1nf +

Step 6. Does ? If the answer is 
"TRUE", then the objective function   is 
nonessential.  

1n
E

n
E

+⊂ XX

1nf +

 
We have implemented each one of the above 
steps in the computer algebra system Maple. 
Below we give an example of a simple computer 
session with our Maple package. 
 
>nonessential([x1+x2+x3, 

-x1+x2+x3,x1+x2],{x1<=1,x2<=1,x3<=1}); 
Objective x1+x2 is nonessential from step 7.

>nonessential([x1+3*x2,3*x1, 
                          -3*x1-x2,2*x1+x2],{});  
Objective 2*x1+x2 is nonessential from step 0. 

>nonessential([x1+3*x2,2*x1+x2,3*x1, 
                          -3*x1-x2],{x1<=1,x2<=1}); 

Objective -3*x1-x2 is essential from step 3.
 

4. CONCLUSIONS 
 

There are theoretical and practical reasons for 
developing a method to find if a given objective 
function is nonessential. In this paper we present 
such a method and its implementation in Maple. 
Our algorithm is based on necessary and suffi-
cient conditions for an objective function to be 
nonessential, and need only to solve a finite 
number of single objective linear optimization 
problems. 
 

REFERENCES 
 
Gal T., Leberling T. (1977) Redundant objective 

functions in linear vector maximum prob-
lems and their determination. European J. 
Oper. Res.1, 176-184. 

Gal T., Hanne T. (1999) Consequences of drop-
ping nonessential objectives for the appli-
cation of MCDM methods. European J. 
Oper. Res. 119, 373-378. 

Gal T., Hanne T. (2006) Nonessential objectives 
within network approaches for MCDM. 
European J. Oper. Res. 168, 584-592. 

Malinowska A.B. (2002) Changes of the set of 
efficient solutions by extending the number 
of objective and its evaluation. Control Cy-
bernet. 31, 964-974. 

Malinowska A.B. (2006) Nonessential objective 
functions in linear multiobjective optimi-
zation problems. Control Cybernet. 35 

     

312



     

 
 
 
 
 
 
 
 
 
 
 
 

INVESTIGATION INTO DEA-ORIENTED PERFORMANCE 
ASSESSMENT IN THE DOMAIN OF MOLP  

 
 

Jian-Bo Yang and Dong-Ling Xu  
 

Manchester Business School, The University of Manchester, Manchester M15 6PB, UK 
Jian-Bo.Yang@mbs.ac.uk and L.Xu@mbs.ac.uk 

 
Keywords: Data envelopment analysis, multiple criteria decision analysis, 

minimax method, efficient frontier, performance assessment  
 
 

 
1. INTRODUCTION 

 
MCDA in general and multiple objective linear 
programming (MOLP) in particular can be used 
for planning future performances. The model 
structures of DEA and MOLP have much in 
common and research on integrating DEA and 
MOLP has attracted increasing attentions to 
support both past performance assessment and 
future target setting in integrated manners 
(Cooper, 2004). For instance, Golany (1988) 
developed an interactive model to allocate a set 
of input levels as resources and to select the 
most preferred output levels from a set of 
alternative points on the efficient frontier. Post 
and Spronk (1999) combined the use of DEA 
and interactive goal programming to adjust the 
upper and lower feasible boundaries of the input 
and output levels. Joro et al (1998, 2003) 
showed the structural similarity between DEA 
and MOLP.  
 
Interactive MCDA methods have been 
investigated to incorporate the DM’s preference 
information into performance assessment and 
target setting without necessarily requiring prior 
judgments (Yang et al 2006) using the minimax 
formulations and the gradient projection method 
(Yang, 1999, 2001; Yang and Li, 2002). Three 
minimax models have been explored, all 
equivalent to the output-oriented CCR dual 
model in DEA and different from each other in 
their reference points and weighting schemas, 
namely the super-ideal point model, the ideal 
point model and the shortest distance model. 

The super-ideal point model is shown identical 
to the output-oriented CCR dual model under 
certain conditions and can be used to conduct 
efficiency analysis in the same way as the CCR 
model does. Based on the equivalence analysis, 
a generic MOLP formulation is constructed, in 
which the features of data envelopes, efficient 
frontiers and efficiency measures can be 
explored, which is the theme of this paper.  
 
To conduct trade-off analysis along an efficient 
frontier, it is fundamental to understand its 
features. Based on our current research and 
recent literature survey, the graphical 
illustrations and interpretations of efficient 
frontiers in DEA are limited to simple problems 
having one input with single multiple outputs, or 
one output with multiple inputs (Cooper et al, 
2000; Joro et al, 2003). There seems to be a lack 
of means for generating and interpreting data 
envelopes and efficient frontiers for DEA 
problems with multiple inputs and outputs. 
Without understanding the features of data 
envelopes and efficient frontiers, it would 
difficult to develop appropriate procedures and 
methods to conduct integrated efficiency and 
trade-off analyses.  
 
This paper is dedicated to investigating 
graphical and analytical methods and procedures 
in MCDA for generating and analysing data 
envelopes and efficient frontiers for DEA 
problems with any numbers of inputs and DMUs 
and with up to three outputs. The investigation 
is conducted in the dual decision and objective 
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spaces and provides interesting insight into data 
envelopes, efficiency measures and efficient 
frontiers for DEA problems having multiple 
inputs and outputs, leading to the definitions of 
efficiency measures including a new technical 
efficiency score (TES) and preferred efficiency 
score (PES). TES provides a revised 
performance measure in situations where the 
conventional DEA efficiency measure seems not 
appropriate to use. PES provides a logical 
measure between the observed DMU and its 
most preferred efficient solution, showing the 
extent to which the observed DMU needs to 
improve its performances to achieve the most 
preferred solution. Several numerical examples 
are studied to illustrate the findings graphically 
and to generate analytically data envelopes and 
efficient frontiers for DEA problems of practical 
size. A case study for UK retail banks is 
conducted using the investigated methods and 
procedures. 

 
 

2. MAIN FINDINGS 
 

The findings reported in this paper show that 
DEA-oriented performance assessment and 
target setting are in essence MCDA problems 
and can be dealt with using various MCDA 
methods. This is useful to support the design of 
pragmatic trade-off analysis processes and 
performance measures for setting future targets 
with decision makers’ preferences taken into 
account. As a result of the investigation, the new 
technical efficiency score (TES) and preferred 
efficiency score (PES) were defined. The former 
provides a revised measure in cases where the 
conventional DEA efficiency measure becomes 
inappropriate to use; the latter can be used to 
measure the degree to which the observed DMU 
needs to improve its performance to achieve the 
most preferred target. The numerical examples 
and case study demonstrated these findings both 
graphically and analytically, which can help 
better understand the efficiency analysis and 
trade-off analysis for performance management. 
 
 

3. CONCLUDING REMARKS 
 

In this paper, the graphical and analytical 
methods and procedures were investigated using 
concepts, models and techniques in MCDA for 
generating and analysing data envelopes and 
efficient frontiers for DEA problems with any 
numbers of inputs and DMUs and with up to 
three outputs. The investigation generated 
interesting insights into the integrated efficiency 
and trade-off analyses and revealed some 

features of data envelopes and efficient frontiers 
which leads to the definition of new efficiency 
measures. Several numerical examples are 
studied to illustrate the findings graphically. A 
case study for UK retail banks is conducted in 
detail using the methods and procedures 
investigated in this paper. This study shows that 
DEA is in essence is a kind of MCDA problem 
and that DEA-oriented performance assessment 
and target setting can be interpreted and 
integrated in the domain of MCDA. 
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1. INTRODUCTION

We want to solve problems on cylinders Ωε =
]0, a[×Oε in Rd, with Oε = εO and O a
bounded open set in Rd−1 (d = 2 or 3 in real ap-
plications). Parameter ε denotes that the section
Oε is much smaller than the length of the axis a.
We denote Γε

s = {s} × Oε, the lateral boundary
of the cylinder Σε =]0, a[×∂Oε and a general
point (xε

1, x
ε
2, · · · , xε

d) ∈ Ωε is also denoted by
(xε, yε), where xε = xε

1 and yε denotes the inde-
pendent variables (xε

2, ..., x
ε
d). Let f ∈ L2(Ωε),

u0 ∈ H1/2(Oε), ua ∈ H1/2(Oε)′ and λ be a
positive constant. The problem we want to solve
is



−∆u + λu = f in Ωε,

∂u

∂ν
= 0 on Σε,

u = u0 on Γε
0,

∂u

∂x
= ua on Γε

a,

(1)

where ν represents the outward normal vector on
the boundary.

The aim of this work is to study the asymp-
totic behavior of the solution when ε → 0. We
do first a change of variable so that the new do-
main is the same for all ε > 0. We consider
the domain given by the cylinder Ω =]0, a[×O
and the change of variable (xε, yε) = (x, εy).
Therefore, in the new variables (x, y) (1) can be
re-written equivalently by



−∂2u

∂x2
− 1

ε2
∆yu + λu = f in Ω,

∂u

∂ν
= 0 on Σ,

u = u0 on Γ0,
∂u

∂x
= ua on Γa,

(2)

2. FACTORIZATION BY INVARI-
ANT EMBEDDING

Factorizing problem (2) by invariant embedding
techniques as in Henry et.al (2004b) and Henry
et.al (2004a), we arrive to the uncoupled system: −dQ

dx
+ Q2 = λI +

1
ε2
A,

Q(a) = 0
(3)

 −dw

dx
+ Qw = −f,

w(a) = −ua

(4)


du

dx
+ Qu = −w,

u(0) = u0,
(5)

where (Ah, ϕ) = (∇yh,∇yϕ) ∀ h, ϕ ∈ H1(O).
A is the abstract operator corresponding to Neu-
mann boundary conditions for the laplacian.

3. SINGULAR PERTURBATIONS

Let e0, e1, . . . , en, . . . be an orthonormal basis
(with respect to the L2(O) norm) of eigenvectors
of A in the following sens{

−∆yei = λiei, in O
∂ei
∂ν = 0, on ∂O
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Let Wr be the space defined by

u =
+∞∑
i=1

ui ei ∈ Wr ↔ ‖u‖2Wr =
+∞∑
i=1

λr
i |ui|2 < +∞

We consider the formal development

Q = ε−1Q−1 + Q0 + εQ1 + ε2Q2 + · · · ,

with Qi, i = −1, 0, 1, · · ·, self-adjoint and non-
negative. We also decompose Qi, fo i ≥ 0, as

Qiϕ =
(

Qaa
i Qab

i

Qba
i Qbb

i

) (
ϕa

ϕb

)
,

with

Qaa
i : W1 → L2(O)/R

Qab
i : R → L2(O)/R

Qba
i : W1 → R

Qbb
i : R → R.

We obtain the following results:
Q−1 = Qaa

−1 = A1/2,
w−1 = 0,

Q0 = Qbb
0 (x) =

√
λ tanh(

√
λ(a− x)),

w0(x) = wb
0(x) =

ub
a

cosh(
√

λ(a−x))
− fb
√

λ
tanh(

√
λ(a− x)),

Q1 = Qaa
1 = λ

2A
−1/2,

w1(x) = wa
1(x) = −A−1/2fa,
Q2 = 0,

w2(x) = wa
2(x) = −A−1 d

dxfa,
Q3 = Qaa

3 = λ2

8 A
−3/2,

w3(x) = wa
3(x) = −A−3/2 d2

dx2 fa + λ
2A

−3/2fa.
As one can see, all the tranverse operators Qab

i

and Qba
i are zero and all the Qi only dependent

on y except Q0 that only dependent on x.
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1. INTRODUCTION 

 
This work concerns the factorization of elliptic 
operators, namely the decomposition of a 
second order elliptic boundary value problem, 
defined in an open bounded regular domain, in a 
system of uncoupled first order initial value 
problems, using the technique of invariant 
embedding. The method presented here is a 
return, in a new spatial approach, to the 
technique of the invariant temporal embedding, 
defined originally in the context of Dynamic 
Programming and used in Control Theory for 
the computation of the optimal feedback. 
 

2. FACTORIZATION BY INVARIANT 
EMBEDDING 

 
The invariant embedding technique consists in 
embedding the initial problem in a family of 
similar problems depending on a parameter, 
which are solved recursively. In our approach, 
each problem is defined over a sub-domain 
limited by a mobile boundary (see Fig 1),  
depending on the parameter. Defining an 
operator relating the value of the solution, or its 
derivative, with the mobile boundary condition,  
we find a family of operators on functions of the 
section satisfying a Riccati equation and relating 
the boundary conditions on the section 
(Dirichlet-Neumann or Neumann-Dirichlet, for 
example).  
For a given problem, this invariant embedding 
method is not unique: for instance we can apply 
the method either to the family of subdomains 

described above, either to the family of 
complementary subdomains; also, it is possible 
to change the type of condition that we impose 
over the mobile boundary. Without loss of 
generality, here we particularize the study to a 
Poisson equation with a Dirichlet boundary 
condition: -∆u = f, in Ω, u | Γa = 0. We present the 
case where the family of curves which limits the 
subdomains defined by the invariant embedding 
are homothetic to one another and homothetic to 
a point, and we consider the moving boundary 
starting on the outside boundary of the domain 
and shrinking to a point. We show some results 
dealing with the singularity that will appear at 
that point. 

 
Fig. 1. Invariant embedding in a star shaped domain. 
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The invariant embedding technique was de-
vised by R Bellman in the context of optimal
control theory to derive the optimal feedback.
In many practical situations in the simulation of
partial differential equation, we are interested to
analyse the solution of the problem more pre-
cisely in a particular smaller subdomain of the
original domain, so it is desirable to zoom the
solution of the problem in a particular region
of the domain. Keeping in view this situation,
here we apply the same idea of the invariant
embedding spacewise for linear elliptic bound-
ary value problems : The original problem in
a starlike domain is now embedded in a fam-
ily of similar problems in smaller domains de-
fined by homothety. Suppose we are interested
in the solution only on one of the smaller sub-
domains : the region of interest. The invariant
embedding technique furnishes operators on the
boundaries of these homothetic domains (similar
to the optimal feedback in the control problem)
which relate Dirichlet and Neuman data on the
boundary. It provides a boundary condition on
the boundary of the region of interest such that
the solution of the related problem is exactly the
restriction of the solution of the original problem
to the domain of interest. The problem solved on
the region of interest with the same number of
unknowns as the original one will yield a bet-
ter precision on this domain (region of interest)
: this is the zooming effect. Numerical simula-
tions in the framework of P1 finite elements are
carried out to demonstrate the method.
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1. INTRODUCTION

We consider a cylinder Ω =]0, 1[×O in Rn,
with O a bounded open set in Rn−1. We
denote Γs = {s} × O, the lateral boundary
of the cylinder, Σ =]0, 1[×∂O and a general
point (x, y1, · · · , yn−1) ∈ Ω is also denoted by
(x, y), where y denotes the independent variables

(y1, · · · , yn−1). Let Ly = −
n−1∑
i,j=1

aij
∂2

∂yi∂yj
be

such that L = − ∂2

∂x2
+ Ly is a strongly ellip-

tic operator. Let f ∈ L2(Ω), u0 ∈ H1/2(O),
u1 ∈ H1/2(O)′. The problem we want to solve
is 

Lu = f in Ω,

u = 0 on Σ,

−∂u

∂x
= u0 on Γ0,

u = u1 on Γ1

(1)

We prove that problem (1) can be factorized
as

−
(

d

dx
+ Q

) (
d

dx
−Q

)
u = f (2)

each of the first order problems having an initial
value at x = 0 or x = 1. The operator Q satisfies
the Riccati equation (3)

2. FACTORIZATION BY INVARI-
ANT EMBEDDING

Factorizing problem (1) by invariant embedding
techniques as in Henry et.al (2004), we arrive to
the uncoupled system:

dQ

dx
+ Q2 − Ly = 0, Q(0) = 0. (3)

dw

dx
+ Qw + f = 0, w(0) = −u0. (4)

du

dx
= Qu + w, u(1) = u1. (5)

The present work intends to generalize results
obtained by Henry (2003) to some second order
strongly elliptic operators not necessarily symet-
ric.

In order to obtain a QR like factorization, we
consider the problem

L2u = Lf in Ω,

u = Lu = 0 on Σ,

−∂u

∂x
= u0,

∂(Lu)
∂x

=
∂f

∂x
, on Γ0,

u = u1, Lu = f on Γ1

(6)
which we prove to be equivalent to problem (1).

Acting like before, we obtain the uncoupled
system:

dQ

dx
+ Q2 − Ly = 0, Q(0) = 0. (7)

dP

dx
+ PQ + QP + I = 0, P (0) = 0. (8)

dt

dx
+ Qt + Lf = 0, t(0) =

∂f

∂x
|Γ0 . (9)

dr

dx
+ Qr + Pt = 0, r(0) = −u0. (10)

du

dx
−Qu−PLu− r = 0, u(1) = u1. (11)

319



REFERENCES

Henry, J. (2003): Factorization of elliptic boundary
value problems: the QR approach. Analysis and op-
timization of differential systems (Constanta, 2002),
200–210, Kluwer Acad. Publ., Boston, MA.
Henry, J., Ramos, A. M. (2004b): Factorization of
second-order elliptic boundary value problems by
dynamic programming. Nonlinear Anal., vol. 59, no.
5, 629–647.

320



A robust extension of the Kalman filter for parabolic systems in the
deterministic framework

J. Henry
INRIA futurs, université Bordeaux 1, Talence, France, jacques.henry@inria.fr

Keywords: Kalman filtering

We consider the invariant embeding technique
for deriving the Kalman filter for parabolic sys-
tems in the deterministic framework. We refer
to (1) for the description of the filtering problem
in a determistic context as a control problem,
where the controls are the initial condition and
the input perturbation. The invariant embedding
technique applied to the optimality system gives
rise to the Riccati equation for the gain of the
filter and the equation of the state estimate. This
can be viewed as a LU factorization of the opti-
mality system. Here we show that a QR like fac-
torization of the optimality system yields a new
version of the Kalman filter equations which is
more robust in the sense that it is less sensitive
to mismodeling.
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1. INTRODUCTION

We aim at extending the approximate balancing
method presented in (Sorensen et al., 2002; Al-
daheri, 1991). It deals with model reduction for
linear symmetric systems in an efficient way, based
on solving a Sylvester equation whose solution is
the so-called cross-Gramian (e.g. see (Fernando et
al., 1983)). The eigenvalues of the cross Gramian
are the Hankel singular values of the system. The
advantages of this method, in comparison to the
usual balancing procedure, are that it requires
solving only one Sylvester equation and that it
avoids the balancing procedure, being more effi-
cient from computational point of view.
We study the notion of cross Gramians for non-
linear gradient systems, which are the extension
of the notion of symmetric systems. We use the
prolongation and gradient extension associated to
the gradient system, as in (Cortes et al., 2005).
The cross Gramian is given for the variational
system (part of the prolongation) associated to
the original nonlinear gradient system. We obtain
linearization results that precisely correspond to
the notion of a cross Gramian for symmetric lin-
ear systems. Furthermore, starting from the work
in (Fujimoto et al., 2005), first steps towards re-
lations with the singular value functions of the
nonlinear Hankel operator are studied and yield
promising results.

2. LINEAR SYSTEMS CASE

Definition 1 (Sorensen et al., 2002) The cross
Gramian X of a linear system ẋ = Ax + Bu, y =
Cx, is defined as the solution of the Sylvester
equation:

AX + XA + BC = 0. (1)

If the system is asymptotically stable, then :

X =
∫ ∞

0

eAtBCeAtdt.

¤

Definition 2 (Aldaheri, 1991) A linear system is
symmetric if and only if H(s) = HT (s), where
H(s) = C(sI − A)−1B, or equivalently, there ex-
ists T , invertible and symmetric s.t.

TA = AT T, TB = CT .

¤
The cross Gramian has some interesting prop-

erties:
Theorem 3 (Sorensen et al., 2002) If the linear sys-
tem is symmetric, asymptotically stable and min-
imal (controllable and observable), then:

X = T−1M = WT and X2 = WM,

where M > 0, W > 0 are the observability and
controllability Gramians, respectively. ¤

3. GRADIENT SYSTEMS AND LIN-
EARIZATION

Definition 4 (Cortes et al., 2005) A nonlinear
affine system

{
ẋ = f(x) + g(x)u
y = h(x)

, x ∈ M, u, y ∈ Rp (2)

is called a gradient system if,
1. there exists a pseudo-Riemannian metric on

the manifold M , with the associated matrix
G(x), symmetric and invertible for all x ∈ M ;

2. there exists a smooth potential function V :
M → R,

such that (2) can be written as:





ẋ = −G−1(x)
∂T V

∂x
(x) + G−1(x)

∂T h

∂x
(x)u

y = h(x)
(3)
¤
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For the nonlinear system two associated sys-
tems are defined:
• the prolongation :





ẋ = f(x) + g(x)u

v̇ =
∂f(x)

∂x
v +

m∑

j=1

uj
∂gj(x)

∂x
v + g(x)up

y = h(x), yp =
∂h(x)

∂x
v

,

(4)
• the gradient extension:





ẋ = f(x) + g(x)u

ṗ =
∂T (f(x) + g(x)u)

∂x
p

+F(gij(x), ∂gij(x)
∂xk

, fk(x), p) +
∂h(x)

∂x
ug,

y = h(x), yg = gT (x)p, i, j, k = 1...n
(5)

Theorem 5 (Cortes et al., 2005) Let (2) be locally
observable. Assume that (5) exists and is well
defined. Then, under additional technical condi-
tions, (2) is a gradient control system, as in (3),
if and only if the prolonged system Σp and the
gradient extension Σg have the same input-output
behaviour. ¤
Lemma 6 (Cortes et al., 2005, Lemma 5.5, 5.6) If
(2) is a gradient control system, then there exists
a diffeomorphism φ(x, v) = (x, G(x)v), such that
(x, p) = φ(x,G(x)v). ¤

Linearizing (3), around an equilibrium x0, a
linear gradient (symmetric) system is obtained,
whose metric is T = G(x0). Assume that the ob-
servability function and the controllability func-
tion of (2), Lo(x) and Lc(x), respectively, exist
and are positive definite. Also, suppose that the
observability Gramian M and the controllability
Gramian W of the linearized system exist and are
positive definite. Then (∂2Lo(x)/∂x2) = M and
(∂2Lc(x)/∂x2) = W−1. The symmetry of the lin-
earized system, implies, according to Theorem 3,
that, near x0:

G−1(x)
∂2Lo

∂x2
(x) =

(
∂2Lc

∂x2
(x)

)−1

G(x)

Moreover, the linearizations of (4) and around
an equilibrium (x0, 0), yield two linear systems
dual to each other, in the variables v, p. If (2)
is gradient, then p = Tv, T = G(x0). Thus, a
study of the variational system (v part of (4)) is
motivated.

4. NONLINEAR CROSS GRAMIAN

Denote by Σ′p, the variational part of (4) and Σ′g,
the p part of (5), of (2) which is assumed gradi-
ent. According to Lemma 6, p = G(x)v. Assume
that Lo(x, v) = 1

2vT M(x)v exists and is positive
definite, where the entries of M(x) are smooth
functions. Then, M(x) satisfies

pT G−1(x)M(x)
∂f(x)

∂x
v +

1
2
pT g(x)gT (x)p

=
∂Lo(x, v)

∂x
f(x)− vT ∂2Lo(x, v)

∂v∂x
f(x)

(6)

We call X (x) = G−1(x)M(x) the cross
Gramian of Σ′p.
Remark 7 In the linear case, (6) becomes:

T−1M ·A +
1
2
BC = 0,

where X = T−1M is the cross Gramian. ¤
Conjecture 8 For a nonlinear gradient system with
the associated variational system Σ′p, if λi, i =
1, ..., n satisfy

∂Lo

∂x
(x(0)) = λ

∂Lc

∂x
(x(0)),

then they are the squared eigenvalues of X (x).
Since, the λ’s are related to (4), associated to

(2), it means that if they are related to the eigen-
values of the cross Gramian, the Hankel singular
values can be obtained from solving an eigenvalue
problem for X (x). Then, the metric and the ob-
servability function provide the singular values of
the system, similar to the linear case.
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Proper orthogonal decomposition (POD) is a powerful technique for model reduction of linear and

nonlinear systems. It is based on a Galerkin type discretization with basis elements created from

the system itself. In this work POD is applied to estimate parameters in elliptic partial differential

equations (PDEs). The parameter estimation is formulated in terms of an optimal control problem that

is solved by an augmented Lagrangian method combined with a sequential quadratic programming

(SQP) algorithm. Numerical examples illustrate the efficiency of the proposed approach. In particular,

POD is used to estimate the regularization parameters of the identification problem.
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Proper orthogonal decomposition (POD) is a powerful technique for model reduction of nonlinear

systems. It is based on a Galerkin type discretization with basis elements created from the system

itself. In the context of optimal control this approach may suffer from the fact that the basis elements

are computed from a reference trajectory containing features which are quite different from those of

the optimally controlled trajectory. A method is proposed which avoids this problem of unmodelled

dynamics in the POD approach to optimal control. It is referred to as optimality system proper

orthogonal decomposition (OS-POD).
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We deal with a minimum time problem with

state constraints that we study via a finite hori-

zon target problem. The theoretical study of this

latter problem shows that the value function sat-

isfies an evolutive HJB equation. We focus here

on the numerical approximation of this discontin-

uous value function by discretization of the HJB

equation.

There is a large litterature on the numerical ap-

proximation of HJB equations. It concerns es-

sentially the case when the function to approach

is continuous. In this case classical schemes

give quite good approximations. Nevertheless,

as these schemes involve finite differences, they

produce a lot of numerical diffusion especially

around discontinuities and for long horizons.

Hence they are no more efficient when approxi-

mating discontinuous functions.

The anti-dissipative UltraBee scheme has been

developed to study compressible gas dynamics

[4], and more precisely to solve the transport

equation. A generalization to HJB equations and

many academic tests have been done to evalu-

ate the behaviour of the scheme when dealing

with discontinuities. Its comparison with the vi-

ability algorithm was encouraging to study more

deeply the scheme. We recently proved the con-

vergence of this explicit non monotone scheme

for general piece wise continuous functions with

compact support [2].

On the other side, a sparse storage of the data

allows to achieve a better precision and an im-

portant gain of time. The storage capacity is also

more efficiently managed by this technique.

The combination of the anti-dissipative UltraBee

scheme with the sparse storage technique allows

to develop a fast method that we are presenting.

Besides the minimum time problem, we apply

our method to several academic examples in 2D

and 3D coming from various domains (viability,

fronts propagation, ...). A particular application

consists in a simplified model of atmospheric re-

entry in minimum time under a thermal state con-

straint. The main model that we consider is pro-

posed by Betts [1]. This problem has been deeply

studied by Bonnard and Trelat [3] from the the-

oretical point of view. They also proposed a tra-

jectory reconstruction using the multiple shoot-

ing method. We treat here the problem by our

anti-dissipative method. We are also interested

in the optimal trajectory reconstruction starting

from the numerical value function.
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We consider the following optimal control

problem (OCP) subject to mixed control-state

constraints:

Minimize

∫
1

0

f0(x(t), u(t))dt

s.t. x′(t) = f(x(t), u(t)) a.e. in [0, 1],

ψ(x(0), x(1)) = 0,

c(x(t), u(t)) ≤ 0 a.e. in [0, 1],

where x ∈ W 1,∞([0, 1],Rnx), u ∈

L∞([0, 1],Rnu). Without loss of generality

we consider only autonomous problems on

the fixed time interval [0, 1]. The functions

f0 : R
nx × R

nu → R, f : R
nx × R

nu → R
nx ,

ψ : R
nx × R

nx → R
nψ , c : R

nx × R
nu → R

nc ,

are supposed to be at least twice continuously

differentiable w.r.t. to all arguments.

Several approaches towards the numerical so-

lution of OCP have been investigated in the liter-

ature. The so-called direct discretization method

is based on a discretization of the infinite dimen-

sional optimal control problem and leads to a

finite dimensional nonlinear program. The latter

can be solved numerically by suitable program-

ming methods such as, e.g., sequential quadratic

programming. The direct discretization method

turns out to be very robust in practice. Neverthe-

less, the computational effort grows at a nonlin-

ear rate with the number of grid points used for

discretization.

The so-called indirect method for optimal

control problems attempts to satisfy the neces-

sary conditions that are provided by the well-

known minimum principle numerically. The ex-

ploitation of the minimum principle leads to a

nonlinear multi-point boundary value problem

that has to be solved. Although the indirect

method usually leads to the most accurate solu-

tions, it suffers from the drawback that it requires

a good initial guess in order to convergence. One

crucial task is to estimate the sequence of active

and inactive intervals of the control-state con-

straint.

In our talk we consider the indirect approach,

which avoids the latter drawback, and apply the

nonsmooth Newton’s method for its realization.

The method is based on a nonsmooth reformu-

lation of the necessary optimality conditions. A

brief outline of the essential ideas of the algo-

rithm is as follows. The necessary conditions

are stated in terms of a local minimum princi-

ple. By use of the Fischer-Burmeister function

the local minimum principle is transformed into

an equivalent nonlinear and nonsmooth equation

in appropriate Banach spaces:

F (z) = 0, F : Z → Y,

where Z and Y are appropriate Banach spaces.

Application of the globalized nonsmooth New-

ton’s method generates sequences {zk}, {dk} and

{αk} related by the iteration

zk+1 = zk + αkd
k, k = 0, 1, 2, . . . .

Herein, the search direction dk is the solution of

the linear operator equation Vk(d
k) = −F (zk)

and the step length αk > 0 is determined by a

line-search procedure of Armijo’s type for a suit-

ably defined merit function. The linear operator

Vk is chosen from an appropriately defined gen-

eralized Jacobian ∂∗F (zk) (for details see (1)).
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In our talk we describe how the search direc-

tion dk can be computed by the multiple shoot-

ing approach. We particularly consider the di-

chotomy case, so that the linear operator Vk con-

tains both fast growing and fast decaying modes.

Utilizing this fact, we can successfully solve the

linear system Vk(d
k) = −F (zk) combining com-

pactification and decoupling, where the decou-

pling corresponds to the splitting of growing and

decaying modes, which results in a stable version

of the nonsmooth Newton’s method.

Each iteration of the Newton’s method con-

tains three alternative sweeps through a time

horizon, so that the information evaluated within

each sweep is required to integrate the others

two. To reduce the huge memory requirement,

resulting by the straightforwardly storing all in-

formation evaluated during each sweep, we ap-

ply checkpointing techniques. As developed in

(2; 3), checkpointing means that not all inter-

mediate states are saved but only a small subset

of them is stored as checkpoints. Because of the

triple sweep within each Newton iteration, we are

faced here with a nested checkpointing, where

checkpoints from various sweeps must be kept

simultaneously. In our talk we describe some

heuristics to construct appropriate nested rever-

sal schedules.

Finally we present some numerical examples.
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1. INTRODUCTION

Direct methods have been proven to efficiently

solve large scale optimal control and nonlinear

model predictive control problems. A compre-

hensive overview of the different solution tech-

niques is given in the book of Grötschel et al.

[1]. For notational simplicity this contribution

focuses on single shooting though the results

are also applicable for the multiple shooting ap-

proach.

In single shooting typically medium size

dense NLPs have to be solved. State of the art

nonlinear programming solvers employ either in-

terior point methods or sequential quadratic pro-

gramming (SQP). In both cases either the exact

or an approximate Hessian of the Lagrangian is

required by the nonlinear programming solver.

The contribution of this paper is a new method-

ology for the fast computation of this Hessian for

path-constrained optimal control problems.

2. PROBLEM STATEMENT

We consider Mayer-type optimal control prob-

lems involving linear-implicit DAE systems of

index less than or equal to one. Single shoot-

ing is one approach to solve such optimal con-

trol problems. The discretization of the optimal

control problem leads to the following nonlinear

program:

min
p

Φ(tf , x(tf ), p) (1)

s. t. B ẋ(t) = f(t, x(t), p) , (2)

x(t0) = x0(p) , (3)

g(ti, x(ti), p) ≤ 0, i = 0, . . . , N , (4)

h(tf , x(tf ), p) ≤ 0 , (5)

t ∈ [t0, tf ] . (6)

Here, x(t) ∈ R
nx is the state vector includ-

ing algebraic variables, p ∈ R
np is a time-

invariant parameter vector including discretized

control variables. B ∈ R
nx×nx is the mass,

f(t, x(t), p) ∈ R
nx . g(ti, x(ti), p) ≤ 0 ∈

R
ng , i = 0, . . . , N are the relaxed path con-

straints on a grid t0 < t1 < · · · < tN = tf ,

and h(tf , x(tf ), p) ≤ 0 ∈ R
nh are the endpoint

constraints. Note that equation (2) is solved by

an underlying integration.

The Lagrangian of the nonlinear program can

be stated as

L(p, µ, ν) =Φ(tf , x(tf ), p) + νT h(tf , x(tf ), p)

+

N
∑

i=0

µT
i g(ti, x(ti), p) (7)

with Lagrange multipliers µi ∈ R
ng , i =

0, . . . , N and ν ∈ R
nh . This contribution fo-

cuses on the computation of the Hessian of the

Lagrangian with respect to p namely Lpp.

3. ADJOINT EQUATIONS

If no path constraints are present, the computa-

tion of (7) is reduced to the computation of

d2

dp2

(

Φ(tf , x(tf ), p) + νT h(tf , x(tf ), p)
)

.

In this situation second-order adjoint sensitiv-

ity analysis can efficiently provide the Hessian.
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Haug and Ehle [2] employ second-order adjoint

equations for the sensitivity analysis of mechan-

ical systems. Özyurt and Barton [3] investi-

gate the combination of directional second-order

adjoint equations with automatic differentiation

techniques.

The main idea in second-order adjoint sen-

sitivity analysis is to introduce adjoint variables

λ(t) ∈ R
nx and λp(t) ∈ R

nx×np for the states

and first-order sensitivities, respectively. First-

order sensitivities xp(t) can be computed by an

integration of first-order sensitivity equations e.g.

Schlegel et al. [4]. While the state and first-order

systems have to be integrated forward in time, the

first-order and second-order adjoint systems have

to be integrated backwards. During this back-

ward integration the states and first-order sensi-

tivities have to be present for example, by inter-

polation. After solving the adjoint systems, the

Hessian can essentially be obtained by solving a

quadrature problem of dimension np(np + 1)/2

[3].

If path constraints are involved, second-

order adjoint sensitivity analysis cannot be ap-

plied without additional considerations. In this

case, second-order derivatives of DAE-embedded

functionals evaluated at different points in time

are involved:

d2

dp2

(

µT
i g(ti, x(ti), p)

)

, i = 0, . . . , N .

Thus, in a primitive approach, N − 1 additional

second-order adjoint systems have to be inte-

grated.

The contribution of the authors is the intro-

duction of so called composite adjoints. Using

the approach of composite adjoints, only one ad-

joint system has to be solved. The computation

of the Hessian of the Lagrangian with composite

adjoints essentially comprises

• the forward integration of the combined state

and first-order sensitivity system of dimension

R
nx×(np+1),

• the backward integration of the combined

first-order and second-order adjoint system of

dimension R
nx×(np+1),

• the solution of a quadrature problem of di-

mension np(np + 1)/2.

4. OTHER APPROACHES

In comparison, the computation of the Hes-

sian with a primitive adjoint sensitivity approach

comprises

• the forward integration of the combined state

and first-order sensitivity system of dimension

R
nx×(np+1),

• the backward integration of N combined first-

order and second-order adjoint system of di-

mension R
nx×(np+1),

• the solution of N quadrature problems of di-

mension np(np + 1)/2.

Employing second-order forward sensitivity

equations e.g. Vassiliadis [5] comprises

• the forward integration of the combined state,

first-order and second-order sensitivity system

of dimension R
nx×(np(np+1)/2+np+1).

5. NUMERICAL CASE STUDY

A numerical case study will be provided.

6. CONCLUSIONS

A new methodology to efficiently provide the

Hessian of the Lagrangian of in single shoot-

ing has been proposed. The algorithm employs

the novel concept of composite adjoints to reduce

the computational effort of a Hessian evaluation.

Although not an topic of this contribution the al-

gorithm can easily be adapted for multiple shoot-

ing.

REFERENCES

[1] M. Grötschel, S. O. Krumke, and J. Rambau.
Online Optimization of Large Scale Systems.
Springer, Berlin, 2001.

[2] E. J. Haug and P. E. Ehle. Second-order de-
sign sensitivity analysis of mechanical system
dynamics. Internat. J. Numer. Methods Engrg.,
18:1699–1717, 1982.
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1. INTRODUCTION 

 
The direct computational methods of optimal 
control use finite-dimensional parameterizations 
of control and, possibly, state trajectories. 
Interval polynomials are used, with the coeffi-
cients and sometimes the nodes being decision 
variables. In the adaptive direct methods 
(Cervantes, Biegler 2001, Schlegel et al. 2005), 
the decision space is systematically recon-
structed by mesh refinement to improve the 
approximation.  
In this paper, the adaptation is based on the 
monotone structural evolution (MSE) (Szymkat, 
Korytowski 2003, 2006). The adjustment of the 
decision space proceeds in a series of structural 
changes, separated by periods of gradient 
optimization. The changes, based on efficiency 
analysis speed up optimization and are con-
tinued until the maximum principle conditions 
are met with sufficient accuracy. 
Consider a control system ,0),,( Ttuxfx ≤≤=�  

0)0( xx =  with the state ntx R∈)( . The piece-
wise continuous controls u take values in 

mRU ⊂ . The horizon 0>T  is fixed or free. 
The cost =),( TuS )),(( TTxϕ  is minimized 
subject to rTxh 0))(( = . To treat this constraint 
by penalty method, define an auxiliary cost  

2
2
1 ||))((||)),((),( TxhTTxTuS ρϕρ += , 0>ρ . 

Let ),(),,( uxfuxH �ψψ = . The adjoint vector 
ψ  is a solution of ],,0[),,,( TtuxH x ∈′−= ψψ�   

)),(()( TTxT xϕψ ′−= ))(())(( TxhTxh �′−ρ . 
 

2. BASICS OF MSE 
 
Define the nodes Nttt ≤≤≤= ...0 10 T= . The 
control structure is a sequence of procedures iP , 

Ni ,...,2,1=  that determine the control, =)(tu  
),),(( ii pttxP  in [,[ 1 ii tt −  where ip  is a parame-

ter. The procedures (taken from a fixed, finite 
set), their number, order and parameters, the 
nodes 11 ,..., −Ntt  and, possibly, Nt  are decision 
variables. The restrictions of control to [,[ 1 ii tt −  
are called arcs. For the boundary arcs define 
constant procedures taking values at expected 
hamiltonian maximizers. On the interior arcs 

),()( ptPtu =  where P is an Hermite interpola-
tion polynomial with the coefficient vector p. 
The approximation mapping ����→⊃ aA DD: , 
from an admissible set in a finite-dimensional 
decision space into a functional control space, 
allows the cost to be redefined as a function of 
the decision vector, )),(()( TdASd ρ=Σ . In 

MSE, the decision space is adapted to the accu-
mulated knowledge on optimal solution by 
structural changes, determined by mappings of 
the form �),( dD ),( dD  where DD ⊂∈ ad , 

∈d  DD ⊂a . Let A be assigned to D and A  to 

D . The condition of control preservation 
)()( dAdA = , ad D∈ , ad D∈  guarantees mo-

notonicity of the cost. Two kinds of structural 
changes are used in MSE: the dimension of the 
decision space increases in a generation, and is 
diminished in a reduction. To define the effi-
ciency E of a generation, let D∈0d  be the 
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decision vector before and D∈0d , after it. Let 

=Σ )(d )),(( TdASρ . If )( 0dΣ′−=γ  points to 

int aD  and )( 0dΣ′−=γ  to int aD , then the 

efficiency =E 22 |||||||| γγ − . Otherwise, appro-
priate projections are used. A driving generation 
occurs if 2||||/ γE  exceeds a given threshold. 
The number of simultaneously generated nodes 
is limited by additional rules.  

The basic algorithm of MSE is as follows. 
10 Selection of initial decision space and  

starting point. 
20 Termination, if optimality conditions in ����  

are satisfied. 
30 Generation, if promising or needed. 
40 Iteration of gradient optimization. 
50 Reduction, if necessary.  
60 Return to 20.  

The optimality conditions in step 20 are based 
on the maximum principle conditions. Step 30 is 
distinctive for MSE and crucial for converg-
ence. The gradient and efficiency computations 
use adjoint solutions. While the gradients can be 
found differently, the adjoints are indispensable 
for verifying the MP conditions, and for choos-
ing generations with satisfactory efficiency. 

 
 

3. POLYNOMIAL REPRESENTATION 
 

Every interior control arc is an Hermite interpola-
tion polynomial (Sharma, Mathur 1979) 
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In such a representation, all decision variables 
have clear geometric interpretations, and it is 
easy to impose regularity requirements.  

The admissible decision variables satisfy 0
1−sp , 

U∈−
0
sp , Ns ...,,1= , and the condition of proper 

arrangement of nodes (including the implicit non-
saturation condition). The control regularity con-
ditions at the nodes read =i

sp i
sp −  iKs ∈∀  

where ⊂iK }1...,,1{ −N , ...,1,0=i   Special rules 
apply to the nodes adjacent to boundary arcs. 

Let =),( baJ ki � ∇−
b

a kiu tbatVuxH d),,(),,(ψ . 

The cost derivatives w.r.t. decision variables are 
expressed by (Szymkat, Korytowski 2007) 
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4. IMPLEMENTATION 
 

The method is illustrated with two computation-
al examples. In the first, an inverted pendulum 
on a car with scalar control and quadratic cost is 
considered. The second example deals with a 
non-isothermal semi-batch reactor with two 
controls. We use ‘driving’ generations of two 
types: nodal, which consist in inserting one or 
two new nodes (in the latter case at the same 
point), and degree generations where the 
polynomial order is increased.  
The efficiency of generations of these types is 
nonnegative at stationary points of the optimiza-
tion algorithm in constant decision space. If the 
efficiency identically vanishes, the correspond-
ing control fulfils the necessary optimality 
conditions of the maximum principle. Apart 
from the driving generations, there are ‘forced’ 
generations resulting from control saturation. 
The choice of the type and parameters of a 
driving generation is based on a comparison of 
the respective relative efficiencies.  
The numerical experiments show that a moder-
ate increase of the amount of analytical work 
may result in a substantial improvement of 
convergence rate. 
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1. INTRODUCTION

This paper presents a control theoretic approach
that provides a uniform theory of stationary and
mobile robotic manipulators. A mobile manipu-
lator is a robotic device composed of a mobile
platform and a stationary onboard manipulator.
A synergy of mobility and manipulation capabil-
ities makes these devices of paramount usabil-
ity in personal and service robotics. In the pa-
per we concentrate on the kinematics of a mo-
bile manipulator that consists of a noholonomic
mobile platform and a holonomic onboard ma-
nipulator. As an example of such a robot Fig-
ure 1 presents a 4 wheel mobile platform car-
rying a 3 degree of freedom manipulator. We

Fig. 1. Mobile Manipulator

let q = (x, y, ϕ, ψ) ∈ R4 describe the position,
orientation and the heading angle of the plat-
form, while x = (x1, x2, x3) ∈ R3 denotes joint
positions of the onboard manipulator. Carte-
sian positions of the end effector are denoted as
y = (y1, y2, y3) ∈ R3. Under assumption of

no side-slip of the platform wheels the kinemat-
ics of this mobile manipulator become a driftless
control system

q̇1 = u1 cos q3 cos q4, q̇2 = u1 sin q3 cos q4,

q̇3 = u1 sin q4, q̇4 = u2,

with output function

y = (q1 + (l2 + l3 cosx3) cos(q3 + x1),

q2 + (l2 + l3 cosx3) sin(q3 + x1), x2 + l3 sinx3) .

2. METHODOLOGY

In the general case the control system represen-
tation of kinematics of the mobile manipulator
assumes the following form

{
q̇ = G(q)u =

∑m
i=1 gi(q)ui,

y = k(q, x).
(1)

Above, the vector q ∈ Rn refers to platform gen-
eralized coordinates. The controls (u(·), x) driv-
ing the system (1) include instantaneous platform
speeds u(t) ∈ Rm and joint positions x ∈ Rp of
the manipulator. The set of control functions,
equipped with inner product

〈(u1(·), x1), (u2(·), x2)〉RW =
∫ T

0
uT

1 (t)R(t)u2(t)dt+ xT
1Wx2,

forms a Hilbert space X = L2
m[0, T ]×Rp called

the endogenous configuration space of the mobile
manipulator (Tchoń and Jakubiak, 2003). The
vector y ∈ Rr collects taskspace coordinates.
The end point map

Kq0,T (u(·), x) = y(T ) = k(ϕq0,T (u(·)), x), (2)
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where q(t) = ϕq0,t(u(·)) stands for the platform
trajectory, defines the kinematics of the mobile
manipulator. The Jacobian operator is a deriva-
tive of the kinematics

Jq0,T (u(·), x)(v(·), w) =

d

dα

∣∣∣∣
α=0

Kq0,T (u(·) + αv(·), x+ αw) =

C(T, x)
∫ T

0
Φ(T, s)B(s)v(s)ds+D(T, x)w.

The computation of the Jacobian utilizes the vari-
ational system

{
ξ̇ = A(t)ξ +B(t)v,
η = C(t, x)ξ +D(t, x)w

associated with (1), where matrices

A(t) = ∂(G(q(t))u(t))
∂q , B(t) = G(q(t)),

C(t, x) = ∂k(q(t),x)
∂q , D(t, x) = ∂k(q(t),x)

∂x ,

come from the linear approximation of system (1)
along the control-trajectory pair (u(t), x, q(t)).
An endogenous configuration (u(·), x) ∈ X is
regular, if the Jacobian is surjective, otherwise
the configuration is singular. A necessary and
sufficient condition of regularity is the full rank-
ness of the Gram matrix

Dq0,T (u(·), x) = D(T, x)W−1DT (T, x)+

C(T, x)
∫ T

0
Φ(T, s)B(s)R−1(s)×

BT (s)ΦT (T, s)ds CT (T, x) (3)

of the linear approximation to (1). At regular
configurations the system (1) is locally output
controllable. The singular configurations corre-
spond to singular controls of this system.

3. INVERSE KINEMATICS

A fundamental problem of robotics is the in-
verse kinematics problem: Given the kinematics
(2) and a desirable taskspace point yd ∈ Rr,

find a configuration (u(·), x) ∈ X such that
Kq0,T (u(·), x) = yd. An application of the con-
tinuation method yields a dynamic system in X

d

dθ

(
uθ(t)
x(θ)

)
= −γJ#

q0,T (uθ(·), x(θ))×

(Kq0,T (uθ(·), x(θ))− yd)(t), (4)

underlying the Jacobian inverse kinematics algo-
rithms. Above, the operator J#

q0,T (u(·), x) de-
notes a right inverse of the Jacobian. The most
often used is the Jacobian pseudoinverse operator

(
J#

q0,T (u(·), x)η
)
(t) =

[
R−1(t)BT (t)ΦT (T, t)CT (T, x)

W−1DT (T, x)

]
D−1

q0,T (u(·), x)η.

4. PERFORMANCE

The Jacobian operator Jq0,T (u(·), x) transforms
the motion from the endogenous configuration
space into the taskspace. A quality of this trans-
formation can be assessed by looking at the
taskspace image

Eq0,T (u(·), x) = Jq0,T (u(·), x)Sq0,T =

{η ∈ Rr | ηTD−1
q0,T (u(·), x)η = 1}.

of the unit sphere Sq0,T ⊂ X , called the dexterity
ellipsoid of the mobile manipulator. Functions of
eigenvalues of the dexterity matrixDq0,T (u(·), x)
may be used as dexterity measures of the config-
uration (u(·), x). Averaged configuration dexter-
ities provide performance measures of the mobile
manipulator as a whole.

5. CONCLUSION

In the paper we shall derive a collection of Ja-
cobian algorithims (Tchoń and Jakubiak, 2003),
(Tchoń, 2006), discuss their convergence and re-
peatability, as well as introduce specific perfor-
mance measures of mobile manipulators. The
performance optimization will result in providing
motion patterns and design objectives for mobile
manipulators.
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1. Introduction

Motion camouflage is a sly technique found in
nature and employed by bats and hoverflies. We
analyze the pursuit-evader system by introducing
strategies for both players for capturing its prey
and escaping its predator. Analytical bounds for
feedback laws and sufficient conditions for initial
cost and intial conditions are found to guarantee
either capture or evasion in finite time. We also
have numerical implementation satisfying the in-
equalities. Moreover, the steering laws are im-
plemented in a testbed to check feasibility in a
real environment.

Motion camouflage is a sly technique that al-
lows a pursuer to approach a prey while appear-
ing to remain stationary from the viewpoint of
the prey. To accomplish this, the pursuer follows
a path in which a line connecting the pursuer
and the evader at each time step retains the same
slope; see fig. 1. In this way, the evader identi-
fies no movement from the pursuer. The motion
camouflage strategy has been observed in nature.
For instance, it has been suggested that bats use
motion camouflage to minimize the time to cap-
ture of a moving prey. In (9)-(1), the experimen-
tal data suggests motion camouflage interactions
between hoverflies.

In this work, we extend the work of Justh and
Krishnaprasad (4) on steering laws for motion
camouflage. An earlier study of the mathematics
of motion camoulfage was done by Glendinning
(2). We analyze the interaction of both the pur-
suer and evader when the strategies are present.
In (4), feedback laws are derived from a cost
function based on the ratio of change of the base-
line vector corresponding on the positions of the

Fig. 1. The round dots represent the evader as the
square dots represent the pursuer.

pursuer and evader. In addition, analytical stud-
ies show bounds on the gain to guarantee capture
at some time. Here we analyze the bounds on the
gains for both the strategies of the players in the
pursuit and evasion cases. Moreover, we also
have numerical simulations to verify the analyti-
cal bounds as well as testbed simulations for the
steering laws to demonstrate its feasibility in a
real environment.

2. Modeling Equations

The equations of motion for the players are the
following (4),(8), and the references therein:

ṙp = xp,

ẋp = ypup,

ẏp = −xpup.

and

ṙe = νxe,

ẋe = νyeue,

ẏe = −νxeue
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where rp and re are the position of the pursuer
and evader, respectively. The corresponding unit
tangent vectors are xp and xe while the unit nor-
mal vectors are denoted yp and ye. In addition,
the controls up and ue are the curvatures of rp

and re, respectively. These systems of equa-
tions are so-called Frenet-Serret equations. The
derivation of these equations can be found in (5).

In the work of Justh and Krishnaprasad (4),
the control law up is a motion camouflage feed-
back which forces the pursuer to be in the same
constant bearing as the evader.

Definition 2.1 Motion camouflage with respect
to the point at infinity is

r = λr̄

where

r = rp − re,

r̄ is a unit vector, and λ ∈ R.

The cost function associated with the motion
camouflage is

Γ(t) =
d
dt |r|
|dr
dt |

,

which is the ratio of the rate of change of the
baseline vector r and the absolute rate of change
of the baseline vector. Moreover,

Γ̇ =
|ṙ|
|r|

[
1
|ṙ|2

(
r

|r|
· ṙ⊥

)2
]

+
|ṙ|
|r|

[
1
|ṙ|2

(
r

|r|
· ṙ⊥

)]
(1− ν (xp · xe))up

+
|ṙ|
|r|

[
1
|ṙ|2

(
r

|r|
· ṙ⊥

)]
(ν − (xp · xe)) ν2ue

3. Results

We study the interaction of the players in a
pursuit-evasion game, that is, when both control
feedback strategies are present. Let the strategies
be

up = −µ

(
r

|r|
· ṙ⊥

)
and

ue = β

(
r

|r|
· ṙ⊥

)

where β, µ ≥ 0. In addition, we have proven
some sufficient conditions for the pursuer to cap-
ture the evader while maintaining motion cam-
ouflage.

In order to demonstrate its feasibility in a real
environment, we implement the steering laws in-
troduced in (4) and control laws above onto the
UCLA Applied Math Lab micro-car testbed (3).
The testbed is comprised of two major compo-
nents, a tracking system and car-like vehicles.
See the paper (7) for more details on the con-
struction of the testbed.
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1. Introduction

During recent years much attention has been
devoted to the problem of identification of
time-varying systems. To cite some examples,
in [9, 17] Kalman filter based algorithms
for estimation of time-varying parameters
are presented and stability and convergence
results are derived. A discussion about
performance of recursive least squares identi-
fication and related adaptive control can be
found in [5, 6] while in [19] identification of
time-varying systems is investigated in the
framework of information-based complexity.
Neural networks and Markov chain Monte
Carlo based identification strategies are
proposed in [20, 10]. A more recent topic
includes also the study of the so called linear
parameter-varying models, originally intro-
duced in [13], where the system coefficients
are rational functions of the parameters.
Applications of such models to robust gain
scheduling problems can be found in [14, 1].
In [11] an instance of the problem with state
measurements and one parameter is shown
to be equivalent to a linear regression while
in [3] the identification problem is solved
in terms of input/output and parameter
trajectory data.
While all the papers mentioned above are
concerned with discrete-time models, this
paper considers a class of linear state space
systems with parameters evolving according
to a continuous-time Gauss Markov process.
We also assume that such stochastic process
admits a state-space representation and that
the parameter trajectory is not accessible
to direct measurements. Our problem is

to reconstruct such trajectory from a finite
set of nonlinearly related output data. The
novelty of the paper is first to show how
this continuous-time identification problem
can be embedded under the framework of
Tikhonov regularization and reproducing
kernel Hilbert space (RKHS) theory [2, 18].
Next, we exploit such theoretical connections
to derive a novel identification algorithm
which may exhibit significant computational
advantages with respect to those procedures
that rely upon discretizations of the temporal
axis. The current work can also be seen as an
extension to state-space models and general
RKHSs of that presented in [4].
Recent papers in control literature have stud-
ied function estimation problems from the
perspective of regularization by assuming a
linear relationship between the unknown map
and the measurements, see e.g. [8, 12, 15, 16].
In this work we instead consider a nonlinear
function estimation problem in an infinite-
dimensional context and this naturally raises
additional and delicate issues. For instance,
establishing existence of the optimal trajec-
tory of the time-varying parameters is far
from trivial. To overcome these difficulties,
the first part of our work will be devoted
to the development of a new compactness
result related to RKHSs embedded in spaces
of continuous functions. Recent work on
this subject has lead to results that show
pre-compactness of unit balls of RKHSs
in the sup-norm (uniform) topology, see
e.g. Section 5 in Chapter 3 of [7]. In this
paper, we will demonstrate that every scalar
Gaussian process that admits a state-space
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representation is isometrically isomorphic to
a RKHS whose unit ball is compact in the
uniform topology. This result is key since it
will allow first to derive conditions on the
system to be identified which ensure existence
of the solution to the problem. Next, it will
exploited to design an efficient numerical
procedure for system identification. Our
algorithm reconstructs the optimal param-
eter trajectory by generating a sequence of
finite-dimensional Tikhonov-type regulariza-
tion problems whose solutions converge in
the sup-norm topology to that of the original
infinite-dimensional problem. In particular,
the compactness result guarantees that an
accurate approximation of the continuous-
time trajectory can be captured by subspaces
whose dimension may turn out to be small
with respect to the size of observed data.
This may thus render the proposed numerical
scheme extremely efficient.
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After an introduction to elliptic shape optimisation problems, a nonlinear Galerkin approach is investi-
gated for the approximate solution of shape problems. The main focus of the talk is on the behaviour of 
optimal solutions *

NΩ  of finite dimensional auxiliary optimization problems related to *Ω , the optimal 
solution of the original problem. Based on sufficient second order conditions, a complete convergence 
analysis for a sequence of semidiscretized problems can be provided in case of well-posed problems. 
For extension to fully discretized problems, a lemma of Strang type is presented for estimating the 
consistency error. Numerical results confirm the theoretical results. 
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1. INTRODUCTION

From the end of last century to the present times,
it has been growing the interest to solve the eco-
logical problems appearing when the hand of
man acts on the nature. One of these problems
is the necessity to preserve and enhance stocks
of diadromous (fish that migrate between fresh-
water to saltwater) and resident fish in our rivers.
When a dam or a weir is constructed in a river, it
is necessary to build a hydraulic structure that en-
ables fish to overcome the dam to their spawning
and other migrations. This hydraulic structure is
known as a fishway (also fish ladder or fish pass).
There are several types of fishways, but the ver-
tical slot type (1) is generally used. It consists
of a rectangular channel with a sloping floor that
is divided into a number of pools. Water runs
downstream in this channel, through a series of
vertical slots from one pool to the next one be-
low. The water flow forms a jet at the slot, and
the energy is dissipated by mixing in the pool.
Fish ascends, using its burst speed, to get past
the slot, then it rests in the pool till the next slot
is tried (see Fig. 1).

Fig. 1. Ground and plant for the fishway.

In this work, we take interest in the optimal
design of these river fishways. We look for the
location and length of the baffles separating the
pools, in order to obtain a suitable water velocity.

In the zone of the channel near the slots, we
look for a velocity suitable for fish leaping and
swimming capabilities. In the remaining of the
fishway, we look for a velocity close to zero for
making possible the rest of the fish. Moreover,
in all the channel, we try to minimize the flow
vorticity.

2. MATHEMATICAL FORMULA-
TION

We consider a fishway ω ⊂ R2 consisting of sev-
eral pools (separated by dashed lines in Fig. 1)
built in a rectangular channel. We also consider
two transition pools, one at the beginning and
other at the end of the channel. The baffles sep-
arating the pools are made vertical to a flume bed
slope that ranges from 2 to 20%. Water enters by
the left side and runs downstream to the right
side, and fish ascend in the opposite direction.

Water flow in the channel along the time in-
terval (0, T ) is governed by the shallow water
(Saint Venant) equations:

∂H

∂t
+ ~∇. ~Q = 0

∂ ~Q

∂t
+ ~∇.(~u⊗ ~Q) + gH ~∇(H − η) = ~f

 (1)

in ω × (0, T ) and where H(x, t) is the height
of water at point x = (x1, x2) ∈ ω at time
t ∈ (0, T ), ~u(x, t) = (u1, u2) is the averaged hor-
izontal velocity of water, ~Q(x, t) = (Q1, Q2) =
~uH is the flux, g is the gravity acceleration, η(x)
represents the bottom geometry of the fishway,
and the second member ~f collects all the effects
of bottom friction, atmospheric pressure and so
on. These equations must be completed with a
suitable set of initial and boundary conditions.
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Fig. 2. Scheme of the first pool.

The design variables will be the two mid-
points corresponding to the ends of the baffles
(points a = (y1, y2) and b = (y3, y4) in Fig. 2).
These two points will configure the shape of the
complete fishway ω, since we assume that the
structure of the ten pools is the same. We will
impose several constraints on the design vari-
ables: first, we will assume that point a and b

are inside the dashed rectangle of Fig. 2, that is,
the following eight relations must be satisfied:

xinf ≤ y1, y3 ≤ xsup

0 ≤ y2, y4 ≤ ysup

}
(2)

The second type of constraints are related to
the fact that the vertical slot must be large enough
so that fish can pass comfortably through it. This
translates into the two additional relations:

y3 − y1 ≥ ∆1

y2 − y4 ≥ ∆2

}
(3)

Finally, we introduce the objective function
which is intended for obtaining an optimal ve-
locity of water in such a way that in the zone of
the channel near the slots (say the lower third)
the velocity be as close as possible to a desired
velocity (c, 0) suitable for fish leaping and swim-
ming capabilities (and depending on the species
of fish). In the remaining of the fishway, the ve-
locity must be very small for making possible the
rest of the fish. Moreover, in all the channel, we
must minimize the existence of flow turbulence.
Thus, if we define the target velocity ~v by:

~v(x1, x2) =
{

(c, 0), if x2 ≤ 1
3 0.97

(0, 0), otherwise
(4)

the objective function is given by:

j(ω) =
1
2

∫ T

0

∫
ω
‖~uω − ~v‖2dx dt

+
α

2

∫ T

0

∫
ω
|curl(~uω)|2dx dt

(5)

where α ≥ 0 is a weight parameter for the role
of the vorticity in the whole cost function, and

~uω =
~Qω

Hω
for (Hω, ~Qω) the solution of the state

system (1).
Then, the optimization problem consists of

finding the optimal shape ω of the fishway (that
is, the optimal points a and b, satisfying the con-
straints (2) and (3)) such that minimizes the ob-
jective function given by (5).

We also obtain an expression for the gradient
of the objective function via the adjoint system.

3. NUMERICAL SOLUTION

We propose a characteristics-Galerkin method for
solving the state system, and two algorithms to
solve the optimization problem: (i) a derivative-
free algorithm (Nelder-Mead), and (ii) a gradient-
type method computing the cost gradient by solv-
ing the adjoint system with the characteristics-
Galerkin method.

Finally, we show numerical results obtained
for a standard fishway.

4. CONCLUSIONS

We formulate, analyze and solve an optimal
shape problem related to the design of fishways
in rivers. Once the ecological problem is mathe-
matically posed and discretized, a gradient-type
algorithm and a direct search method are pro-
posed for solving the discrete optimization prob-
lem. Finally, the efficiency is confirmed by the
numerical experiments developed by the authors.
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1. INTRODUCTION

The modelling of many technological processes
involves strongly anisotropic features in the solu-
tions of PDEs, e.g. boundary or interior layers
in many fluid flow problems. Efficient numer-
ical approximation of such solution features by
means of the finite element method requires the
use of anisotropically adapted meshes, like for ex-
ample Shishkin meshes. However, application of
this approach relies on a priori analysis on the
thickness, position and stretching direction of the
anisotropic solution feature. If it is impossible to
obtain this information a priori, as it is often the
case for problems with interior layers of unknown
position for example, automatic mesh adaptation
based on a posteriori error estimates or error in-
dicators is essential in order to obtain efficient nu-
merical approximations.

Historically the majority of work on automatic
mesh adaptation used locally uniform refinement,
splitting each element into smaller elements of
similar shape. This procedure is clearly not suit-
able to produce anisotropically refined meshes.
The resulting meshes are over-refined in at least
one spatial direction, rendering the approach far
less efficient than that of the anisotropic meshes
based on a priori analysis.

Automatic anisotropic mesh adaptation is an
area of active research, e.g. [2, 1]. Here we
present a recent approach to this problem [3],
which draws upon techniques from control theory
and optimisation. The core of the idea is to use
not only an a posteriori error estimate to guide
the mesh refinement, but its sensitivities with re-
spect to the positions of the nodes in the mesh as
well.

2. OUTLINE

The underlying idea is to use techniques from
mathematical optimisation to minimise the esti-
mated error by moving the positions of the nodes
in the mesh appropriately. This basic idea is of
course not new, but the approach taken to realise
it is.

A key ingredient is the utilisation of the dis-
crete adjoint technique to evaluate the sensitivi-
ties of an error estimate J = J(uh(s), s) with
respect to the node positions s, where uh =
uh(s) denotes the solution of the discretised PDE,
R(uh, s) = 0, which depends upon the node po-
sitions s. The sensitivities

DJ

Ds
=

∂J

∂uh

∂uh

∂s
+

∂J

∂s

=
∂J

∂s
−ΨT ∂R

∂s
, (1)[

∂R

∂uh

]T

Ψ =
∂J

∂uh
, (2)

are thereby evaluated according to (1), utilising
the adjoint solution Ψ which is defined by (2).
This way, DJ/Ds can be evaluated without com-
puting ∂uh/∂s first, reducing the number of equa-
tion systems to be solved from O(dim(s)) to just
two, independent of dim(s). As the number of
nodes can easily be larger than one hundred even
in extremely coarse meshes (if the domain geom-
etry is complicated), this approach is of funda-
mental importance to make gradient based opti-
misation methods feasible for this type of prob-
lem. Fast optimisation algorithms like BFGS-
type methods can be applied to obtain significant
reductions in the error estimate J after a few op-
timisation steps. The aim of this procedure is to
provide a mesh with problem adapted anisotropic
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elements, which may then be used as a good basis
for further locally uniform adaptive mesh refine-
ment.

3. NUMERICAL EXAMPLE

To demonstrate feasibility of the approach it is ap-
plied to a number of model problems. For the pur-
pose of this abstract we consider a reaction diffu-
sion equation,

−∆u + 1
ε2 u = 1

ε2 in Ω

subject to

u = 0 on ΓD

∂u
∂n = 0 on ΓN ,

where

Ω := (−1, 1)2 \ (−1
5 , 1

5)2

ΓD :=
[
−1

5 , 1
5

]2 \
(
−1

5 , 1
5

)2

ΓN := [−1, 1]2 \ (−1, 1)2

Figure 1 shows an initial mesh for this problem
and an adapted one for ε = 10−3. Concentra-
tion of the elements in the boundary layer which
forms around the hole at the centre of the domain
is clearly visible, and significantly increased as-
pect ratios in the boundary layer may be observed.
For more detail on the approach and the example
we refer to [3].

4. CONCLUSIONS

The approach has first been presented in [3],
where it has been applied to reaction diffusion test
problems. The simplicity and generality of the
underlying ideas imply that it should be applica-
ble to a wide range of problems with anisotropic
solution features. The only requirement is that
an a posteriori error estimate is available which
is sufficiently robust with respect to mesh defor-
mations. In [3] convection diffusion problems
were proposed as a further class of test problems.
These tests have since been carried out with the
expected positive results, which we will presented
here as well.

In all strongly anisotropic test cases the pro-
posed approach resulted in a significantly more
accurate solution when compared to a standard
adaptive h-refinement strategy with the same
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Fig. 1. Initial (a) and adapted (b) meshes for the re-
action-diffusion model problem with a boundary layer
around the square hole

fixed maximum number of degrees of freedom in
the discretisation. This demonstrates that a clear
advantage is obtained by introducing the node
movement step which allows to generate suitable
anisotropy in the mesh.
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1. INTRODUCTION

The lecture is concerned with general optimal

control problems (OCP) which are character-

ized by a nonsmooth ordinary state differential

equation. More precisely, we assume that the

right-hand side of the state equation is piecewise

smooth and that the switching points, which sep-

arate these pieces, are determined as roots of a

state- and control-dependent (smooth) switching

function.

Nonsmooth optimal control problems of this

type rarely have been mentioned in the litera-

ture. Of course, they are special examples for

the rather general theory of Clarke, Ref. (1).

For this kind of nonsmooth OPC new nec-

essary conditions are derived. These conditions

depend on the order of the switching function

with respect to the control variable and of certain

regularity assumptions concerning the occurence

of subarcs where the switching function vanishes

identically, so called singular subarcs. Examples

of order zero and of order one are considered.

2. NONSMOOTH OCPs

The general nonsmooth OCP is given as follows.

Problem (OCP). Determine a piecewise con-

tinuous control function u : [a, b] → R
m, such

that

I = g(x(b)) (1)

is minimized subject to the following constraints

(state equations, boundary conditions, and con-

trol constraints)

x′(t) = f(x(t), u(t)), t ∈ [a, b], x(t) ∈ R
n,

r(x(a), x(b)) = 0 ,

u(t) ∈ U = Πi[ui,min, ui,max] ⊂ R
m.

(2)

The right-hand side of the state equation is of the

form

f(x, u) =

{

f1(x, u), if S(x, u) ≤ 0,

f2(x, u), if S(x, u) > 0,
(3)

where the functions S, fk (k = 1, 2), and r are

assumed to be sufficiently smooth.

3. NECESSARY CONDITIONS

Let (x0, u0) denotes a solution of OCP

which satisfies the order-zero condition, i.e.

Su(x0(t), u0(t)) 6= 0. Further, the following reg-

ularity assumption may hold. There exists a fi-

nite grid a =: t0 < t1 < . . . < ts < ts+1 := b

such that the optimal switching function S[t] is

either positive or negative in each open subin-

terval ]tj−1, tj [, j = 1, . . . , s + 1. Then the

following necessary conditions hold

Theorem 1 There exist an adjoint variable λ :

[a, b] → R
n, which is a piecewise C1–function,

and Lagrange multipliers ν0 ∈ {0, 1}, ν ∈ R
ℓ,

such that

λ′(t) = −Hx(x
0(t), u0(t), λ(t)),

u0(t) = argmin{H(x0(t), u, λ(t)) : u ∈ U},

λ(a) = −
∂

∂x0(a)
[νT r(x0(a), x0(b))],

λ(b) =
∂

∂x0(b)
[ν0 g(x0(b)) + νT r(x0(a), x0(b))],

λ(t+j ) = λ(t−j ), j = 1, . . . , s,

H[t+j ] = H[t−j ], j = 1, . . . , s.

Here, the Hamiltonian is given by H := Hk :=

λT f(x, u), where k ∈ {1, 2} is chosen accord-

ing to the sign of S in the corresponding subin-

terval.

If one allows a singular state subarc, say

[t1, t2], which is characterized by S(x, u) = 0,
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∀t ∈ [t1, t2], on this subarc the minimum princi-

ple has to be modified as a constrained minimum

principle

u0(t) = argmin{H : u ∈ U, S(x0(t), u) = 0}.

Further, if the order-zero condition is substi-

tuted by the order-one assumption S = S(x) and

S(1)
u (x0(t), u0(t)) 6= 0,

where S(1) := Sx(x)Tf1(x, u), the continuity of

the adjoint variable is lost. Instead the following

jump condition of the adjoints has to be satisfied

λ(t+j ) = λ(t−j )+κjSx(x0(tj)), j ∈ Jreg∪Jentry,

Here, j ∈ Jreg are the indices of isolated roots

tj of the switching function, and Jentry denotes

the indices of the entry points of singular state

subarcs.

4. APPLICATIONS

We consider two examples. The first one is taken

from the well-known book of Clarke, Ref. (1).

It describes the control of an electronic circuit

which encludes a diode and a condensor. The

control u is the initializing voltage, the state vari-

able x denotes the voltage at the condensor. The

problem is given in form of a nonsmooth OCP

of the order zero. Depending on the parameters

of the model, the solution may contain a singular

state subarc.

The second example is an economic optimal

control model due to Pohmer, Ref. (2),(3), which

describes the personal income distribution of a

typical consumer, who wants to maximize the

total utility of his lifetime by controling the con-

sumption, the rate of the total time used for work-

ing, and the rate of working time used for ed-

ucation and extended professional training. The

state variables are the human capital and the cap-

ital itself. The utility function contains different

parts which represent the influence of consump-

tion, time of recreation, and human capital. Into

this problem a parameter enters which describes

the interest rate of capital. It is obvious that this

parameter in general will differ for positive and

negative values of the capital. Thus, the resulting

problem in a natural way becomes a nonsmooth

OCP of the order one. For this, the necessary

conditions are derived and numerical solutions

are presented. Again, it turns out that for a cer-

tain distance of the positive and negative interest

rate, the optimal solution contains a singular state

subarc.
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1. INTRODUCTION

Dependent and independent control functions are

often found in space-travel problems, vehicle

models or economic problems. We treat optimal

control problems governed by an ordinary differ-

ential equation. Into this state equation control

components enter by multiplication. If the factor

vanishes on a subinterval, the dependent controls

can be chosen freely. We call dependent con-

trols on these subintervals free control subarcs.

The solution of the optimal control problem is

no longer unique.

Known second order sufficient conditions (2)

cannot be applied to problems with free control

subarcs. We develop new sufficient conditions

and verify these conditions for solution candi-

dates of an orbit transfer problem.

Our first focus lies on sufficient conditions for

regular optimal control problems with free final

time. The appearing Riccati differential equa-

tion has a special structure, which recurs in the

treatment of optimal control problems with free

control subarcs. New sufficiency results are es-

tablished for the Re-entry problem.

2. RE-ENTRY PROBLEM

The Re-entry optimal control problem (4) de-

scribes the flight of an Apollo-type vehicle

through the atmosphere of the earth. The aim is

to minimize the heating-up of the vehicle while

entering the atmosphere.

We are able to show sufficiency for the well-

known solution candidate obtained by the appli-

cation of necessary conditions. The calculated

solution candidate is a weak local minimum.

3. ORBIT TRANSFER PROBLEM

Typical examples for optimal control problems

with free control subarcs are space-travel prob-

lems. Sufficient conditions have only been shown

for problems with minimal flight time (1). In that

work no free control subarcs exist.

We follow the example of a fuel optimal

Earth-Mars orbit transfer problem treated in (3).

The independent control function is the thrust
�

,

whereas the thrust angle � is a dependent con-

trol function. If
�

vanishes on a subinterval, the

problem does not depend on the control � any

more. A free control subarc exists.

We treat solution candidates with a bang-bang

control function
�

and a continuous control func-

tion � . The solution candidate is compared with

other functions having the same switching struc-

ture depending on free control subarcs. We are

able to show second order sufficient conditions

for these solution candidates.

4. CONCLUSIONS

New second order sufficient conditions are de-

veloped for optimal control problems with free

control subarcs. In a first step, we show suffi-

cient conditions for the Re-entry problem with

free final time. If we compare solution can-

didates with same switching structures, we can

show sufficiency for a solution candidate of an

orbit transfer problem.
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1. INTRODUCTION

Still at the beginning of the previous century the
optimal control problems with infinite horizon
became very important with regards to applica-
tions in economics and biology, where an infi-
nite horizon seems to be a very natural phenom-
enon, (5), (3), (10). Since then these problems
were treated by many authors and various nec-
essary, sufficient as well as transversality condi-
tions were obtained, see for instance (6), (9). The
question of existence of optimal solution was in-
vestigated among others by (1), (2), (4), (11) and
(12).

2. THE MAIN PROBLEM CON-
SIDERED

The main problem we consider in this talk is
formulated as follows. Minimize the functional

J(x, u) =

∞∫
0

r(t, x(t), u(t))ν̃(t)dt

subject to all pairs

(x, u) ∈∈ W 1,n
p (R+, ν)× Lr

p(R+, ν) ,

satisfying almost everywhere on R+

the state equations

ẋ(t) = f(t, x(t), u(t)) ,

the control restrictions

u(t) ∈ U, U ∈ Comp (Rr) \ { ∅ },

the initial conditions

x(0) = x0.

The integral in the functional J is understood in
Lebesgue sense. The remarkable on this state-
ment is the choice of the weighted Sobolev- and

weighted Lebesgue spaces as state and control
spaces respectively. The idea of considering the
state trajectories in weighted Sobolev spaces was
firstly mentioned in (8). The functions ν and
ν̃ are assumed to be continuously differentiable,
integrable over R+ having its values in (0, 1].
We call such functions weights. These consid-
erations give us the possibility to extend the ad-
missible set and simultaneously to be sure that
the adjoint variable belongs to a reflexive Banach
space.

3. THE MAIN RESULT AND
CONCLUSIONS

As the main result we formulate an existence
theorem for the formulated problem for concrete
classes of function f . The good imbedding prop-
erties of the weighted Sobolev space, convexity
of the integrand function in control variable and
some growth conditions which are assumed to be
satisfied by the functions r and its derivative al-
low us to ensure the weak lower semicontinuity
of the integral functional involved in the problem
statement. This in turn is important in order to
use the generalized Weierstrass theorem for the
proof of the existence result. Verification of the
weak compactness of the feasible set frames the
second part of the proof.
Finally we formulate several examples, such as
Resource Allocation Model, demonstrating the
applicability of the theorem.
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2 Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
(opti@mate.unlp.edu.ar)

Keywords: Rank-deficient least-squares problems, minimal norm solution, incomplete projections,
regularization

1. INTRODUCTION

Large and sparse systems of linear equations
arise in many important applications [1] as radi-
ation therapy treatments planning, computational
mechanics, optimization and in image process-
ing problems like electromagnetic geotomogra-
phy [2].

In practice, problems coming from the tomo-
graphic image reconstruction are in general in-
consistent and of deficient rank. Those character-
istics imply projection methods are particularly
useful for solving them [1].

Many problems in the field of tomographic
image reconstruction are modeled by the linear
least-squares problem, that is : find x∗ ∈ <n

such that minx ‖Ax− b‖2
Dm

, where A is an m×
n matrix and b ∈ <m, where ‖.‖Dm denotes a
weighted norm, and Dm is a positive definite
matrix.

C. Popa has developed an extension of ART
(Algebraic Reconstruction Technique) [1], called
KERP [2], which converges for inconsistent sys-
tems, and more recently in [3] the authors showed
its efficiency in the case of rank-deficient sys-
tems. Within the framework of the Projected Ag-
gregation Methods (PAM) we have developed ac-
celeration schemes based on projecting the search
directions onto the aggregated hyperplanes, with
excellent results in both consistent and inconsis-
tent systems [4,5]. In particular, the IOP algo-
rithm [5] uses a scheme of incomplete oblique
projections onto the solution set of the aug-
mented system Ax − r = b, which converges to
a weighted least squares solution of the system

Ax = b. It is known that not always the min-
imum norm solution turns out to be the closest
to the true image. In this paper, as other authors
like [3], we consider the regularized weighted
least squares problem

min
x∈<n

1
2
‖Ax− b‖2

Dm
+ βR(x) (1)

where Dm is a matrix of weights of data, and
the second term is a function that penalizes the
image roughness. The discrete smoothing norm
in the previous problem can be defined (see [3])
as R(x) = 2U(x), where

U(x) =
n∑

j=1

∑

i∈Sj

wjiV (xj − xi, δ),

Sj is a set of indices of the nearest neighborhood
of pixel j, wji is a factor of weight, and V (xj−
xi, δ) is a potential function. As it can be seen
in the literature [3], there are several proposals
aiming at the same objective. We have adopted
V (xj−xi, δ) = (xj−xi

δ )2. This gives raise to the
problem

min
x∈<n

1
2
‖Ax− b‖2

Dm
+

1
2
xT Mx, (2)

where the matrix M is positive definite, depend-
ing upon the weights wji and the Sj sets of in-
dices of the nearest neighborhood of each pixel
j.

As in [5], we define two convex sets in the
(2n + m)- dimensional space <2n+m, denoting
by [u; v] the vertical concatenation of u ∈ <n,

with v ∈ <m+n,

P = {p : p = [x; r], x ∈ <n, r ∈ <m+n} (3)
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being r = [r1; r2] ∈ <m+n, such that satisfy
Ax− r1 = b, M

1
2 x− r2 = 0, and

Q = {q : q = [x; 0], x ∈ <n, 0 ∈ <m+n}, (4)

adopting the distance d(p, q) = ‖p− q‖D, for all
p ∈ P , q ∈ Q. D is a diagonal matrix of order
2n + m, whose n first elements are 1’s, and the
next m coincide with those of Dm, and the last
n elements are 1’s.

By means of a direct application of the
Karush-Kuhn-Tucker (KKT) conditions [1] to the
problem

min{‖p− q‖2
D : ∀p ∈ P, ∀q ∈ Q} (5)

it is possible to prove (see [5]) that this is equiv-
alent to (2). This observation led us to use the
IOP algorithm for solving (2), applying an alter-
nate projections scheme between the sets P and
Q, similar to the original development in [5].

In the following sections we will present the
RIOP algorithm based on the same scheme of
the IOP algorithm, together with some related re-
sults needed for defining it and the correspond-
ing convergence theory. In the last Section we
will report numerical experiences for comparing
the performance of the RIOP algorithm with the
version of Kaczmarz Extended (KERP)[3] us-
ing simulated reconstruction problems in bore-
bole electromagnetic geotomography.

2. INCOMPLETE OBLIQUE PRO-
JECTION ALGORITHM

In order to solve the regularized weighted least
squares problem (2) we consider its equivalence
with (5). This observation led us to apply an
alternate projections scheme between the sets P
and Q, but replacing the computation of the ex-
act projections onto P by suitable incomplete or
approximate projections, according to IOP algo-
rithm in [5]. In order to compute the incomplete
projections onto P we apply our ACCIM algo-
rithm [4,5], which uses simultaneous projections
onto the hyperplanes of the augmented system
Ax−r1 = b1 and Mx− r̃2 = 0, and is very effi-
cient for solving consistent problems and conve-
nient for computing approximate projections with
some required properties, as explained in [5].

The diagonal matrix Dm+n ∈ <m+n,m+n is
defined in such a way of allowing us to modify
the weights of the residuals r1 and r̃2. The idea is
to strongly penalize r1, and to use the Euclidean
norm in regard to r̃2 for diminishing its influence
in the general procedure.

3. NUMERICAL RESULTS AND
CONCLUSIONS

In the full paper we will present a comparison of
the results obtained with RIOP, IOP [5],KERP
[2], RKERP [3], for several image reconstruc-
tion problems. As it will be seen the RIOP efec-
tiveness is remarkable in several problems. In
forthcoming papers we will analyze alternative
functions for penalizing the least squares prob-
lem, aiming at smoothing the image. Likewise,
in regard to the same R(x) used in this paper we
will study the effect of adding neighboring pix-
els using a wider radius, and also what suitable
weights are from a practical viewpoint.
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Abstract

Let H be a real Hilbert space equipped with
a scalar product h�; �i and with the norm k � k
induced by h�; �i. Further, let A;B � H be
nonempty, convex and closed subsets. In the
practical considerations one often needs to �nd
an element of the intersection A \ B or, more
general, to solve the following problem

�nd a� 2 A and b� 2 B such that
ka� � b�k = infa2A;b2B ka� bk:

(1)

We suppose that this in�mum is attained. Sev-
eral optimization problems, e.g. the convex
feasibility problem can be reduce to problem
(1) (see, e.g., [SY98, Section 2.9] for details).
Problems of this kind have many practical ap-
plications, e.g. in signal reconstruction (see,
e.g. [CB99] or [SY98, Chapter 6]), in image
reconstruction or in intensity modulated radi-
ation therapy (see, e.g. [CZ97, SY98, HK02]),
where the convex subsets are described by a
large and sparse system linear equalities or in-
equalities.
An important method generating sequences

converging weakly to a solution of problem
(1) is the von Neumann alternating projection
method (AP-method) (see, e.g. [BB94, Sec-
tion 4]). In the method, there are evaluated

the metric projections successively onto A and
B. It is known that a� 2 A and b� 2 B realizes
the distance between A and B if and only if
a� = PAb

� and b� = PBa�, i.e. a� 2 FixPAPB
or b� 2 FixPBPA (see, e.g. [BB94, Lemma
2.2(i)]). Therefore, it is enough to �nd an el-
ement of FixPAPB in order to �nd a solution
of problem (1). In this lecture we construct
a generalization of the AP-method and prove
the weak convergence of the method to a solu-
tion. Consider a sequence (xk) � H generated
by the following iterative scheme

x1 2 A �arbitrary
xk+1 = PA(xk + �k�k(PAPBxk � xk)),

(2)

where the relaxation parameter �k 2 [0; 2] and
the step size �k � 0. We call the method
(2) the relaxed alternating projection method
(RAP-method). If we set �k = �k = 1 in (2) we
obtain the AP-method. One can show that any
sequence (xk) generated by the AP-method
converges weakly to an element x� 2 FixPAPB
(see, e.g. [BB94, Theorem 4.8 and Lemma
2.2]). If A \ B 6= ? then any sequence (xk)
generated by the RAP-method (2) converges
weakly to an element x� 2 FixPAPB = A \ B
if �k = 1 and �k 2 ["; 2� "], where " > 0 (see,
e.g. [BB96, Corollary 3.2.2] for more general
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result). Gurin et al. have proposed the step
size

�k =
kPBxk � xkk2

hPBxk � xk; PAPBxk � xki
(3)

in order to accelerate the convergence of the
RAP-method in the case A \ B 6= ? (see,
[GPR67, Theorem 4]). Recently, Bauschke et
al. have applied this idea in the case A and
B are subspaces of H (see [BDHP03, Theorem
3.23]). Unfortunately, the weak convergence of
the RAP-method is not guaranteed for the step
size (3) proposed by Gurin et al. if A\B = ?.
We show the weak convergence of two RAP-

methods to a �xed point of the operator PAPB,
in the general case and in the case A is a closed
a¢ ne subspace, without assumption A \ B 6=
?. In the case A \ B 6= ? the proposed step
sizes are not less than the proposed by Gurin
et al.
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Consider the nonlinearly constrained network
flow problem (NCNFP)

minimize
x

f(x)

subject to x ∈ F
c(x) ≤ 0,

where:
• The set F is

F = {x ∈ <n | Ax = b, 0 ≤ x ≤ x},

where A is a node-arc incidence m×n-matrix,
b is the production/demand m-vector, x are
the flows on the arcs of the network repre-
sented by A, and x are the capacity bounds
imposed on the flows of each arc.

• The side constraints c(x) ≤ 0 are defined
by c : <n → <r, such that c = [c1, · · · , cr]t,
where ci(x) is either linear, or nonlinear
and twice continuously differentiable on the
feasible set F for all i = 1, · · · , r.

• f : <n → < is nonlinear and twice continu-
ously differentiable on F .
We focus on the primal problem NCNFP and

its dual problem

maximize q(µ) = min
x∈F

l(x, µ)

subject to: µ ∈M,

where the Lagrangian function is

l(x, µ) = f(x) + µtc(x)

and M = {µ | µ ≥ 0, q(µ) > −∞}. We
assume throughout this paper that the constraint
set M is closed and convex, q is continuous
on M, and for every µ ∈ M some vector
x(µ) that minimizes l(x, µ) over x ∈ F can

be calculated, yielding a subgradient c(x(µ)) of
q at µ. We propose to solve NCNFP by using
primal-dual methods (1).

The minimization of the Lagrangian function
l(x, µ) over F can be performed by means
of efficient techniques specialized for networks
(10).

Since q(µ) is approximately computed,
we consider approximate subgradient methods
(4; 5; 6) in the solution of this problem. The
basic difference between these methods and the
classical subgradient methods is that they replace
the subgradients with inexact subgradients.

An approximate subgradient method is de-
fined by

µk+1 = [µk + skc
k]+,

where ck is an approximate subgradient at µk,
[·]+ denotes the projection on the closed convex
set M, and sk is a positive scalar stepsize.

Different ways of computing the stepsize have
been considered:

(a) Constant step rule (CSR) with Shor-type
scaling (9).

(b) A variant of the constant step rule (VCSR)
of Shor.

(c) Diminishing stepsize rule with scaling
(DSRS) (8; 3; 9).

(d) The diminishing stepsize rule without
scaling (DSR) suggested by Correa and
Lemaréchal in (2).

(e) A dynamically chosen stepsize rule based
on an estimation of the optimal value of the
dual function by means of an adjustment pro-
cedure (DSAP) similar to that suggested by
Nedić and Bertsekas in (7) for incremental
subgradient methods.
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The convergence of these methods was stud-
ied in the cited papers for the case of exact sub-
gradients. The convergence of some of these
approximate subgradient methods has been an-
alyzed in (5; 6) (see also (4)).

In this work we put forward some basic con-
vergence results when ck is an approximate sub-
gradient, which extend similar results obtained
by Shor (9) for exact subgradients. Moreover,
we compare the quality of the computed solution
and the efficiency of the approximate subgradient
methods when using CSR, VCSR, DSRS, DSR,
and DSAP over NCNFP problems.
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Abstract: In this talk, we shall deal with standard optimal control problems of linear
neutral functional differential equations in Banach spaces. For the basis of the system theory
of neutral models, the fundamental solution (Green function) is constructed and a variation
of constants formula of the mild solution is established. We introduce a class of neutral
resolvents of operators and prove that the Laplace transform of fundamental solution is
just its neutral resolvent. Necessary conditions handling the fixed time integral convex cost
problem of optimality are characterized in terms of the solutions of associated neutral adjoint
systems. The maximum principle for time varying control domain is derived from optimality
conditions. Also, the time optimal control problem to a target set for linear neutral systems
is investigated.
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1. INTRODUCTION

This paper deals with topology and shape op-
timization of an elastic contact problems. The
shape optimization problem for elastic contact
problem is formulated. Shape as well as topo-
logical derivatives formulae of the cost func-
tional are provided using material derivative
and asymptotic expansion methods, respectively.
These derivatives are employed to formulate
necessary optimality condition for simultaneous
shape and topology optimization. Level set based
numerical algorithm for the solution of the shape
optimization problem is proposed. Numerical ex-
amples are provided and discussed.

2. PROBLEM FORMULATION

Consider deformations of an elastic body occupy-
ing two – dimensional domain Ω with the smooth
boundary Γ. Assume Ω ⊂ D where D is a
bounded smooth hold – all subset of R2. The
body is subject to body forces f(x) = (f1(x),
f2(x)), x ∈ Ω. Moreover, surface tractions
p(x) = (p1(x), p2(x)), x ∈ Γ, are applied to a
portion Γ1 of the boundary Γ. We assume, that
the body is clamped along the portion Γ0 of the
boundary Γ, and that the contact conditions are
prescribed on the portion Γ2, where Γi∩Γj = ∅,
i 6= j, i, j = 0, 1, 2, Γ = Γ̄0 ∪ Γ̄1 ∪ Γ̄2.

We denote by u = (u1, u2), u = u(x), x ∈ Ω,
the displacement of the body and by σ(x) =
{σij(u(x))}, i, j = 1, 2, the stress field in the
body. Consider elastic bodies obeying Hooke’s
law, i.e., for x ∈ Ω and i, j, k, l = 1, 2

σij(u(x)) = aijkl(x)ekl(u(x)). (1)

We use here and throughout the paper the sum-
mation convention over repeated indices (2). The

strain ekl(u(x)), k, l = 1, 2, is defined by:

ekl(u(x)) =
1
2
(uk,l(x) + ul,k(x)), (2)

where uk,l(x) = ∂uk(x)
∂xl

. The stress field σ satis-
fies the system of equations (2)

−σij(x),j = fi(x) x ∈ Ω, i, j = 1, 2, (3)

where σij(x),j = ∂σij(x)
∂xj

, i, j = 1, 2. The fol-
lowing boundary conditions are imposed

ui(x) = 0 on Γ0, i = 1, 2, (4)

σij(x)nj = pi on Γ1, i, j = 1, 2, (5)

uN ≤ 0, σN ≤ 0, uNσN = 0 on Γ2, (6)

| σT |≤ 1, uT σT + | uT |= 0 on Γ2, (7)

where n = (n1, n2) is the unit outward ver-
sor to the boundary Γ. Here uN = uini and
σN = σijninj , i, j = 1, 2, represent the nor-
mal components of displacement u and stress σ,
respectively. The tangential components of dis-
placement u and stress σ are given by (uT )i =
ui−uNni and (σT )i = σijnj−σNni, i, j = 1, 2,
respectively. | uT | denotes the Euclidean norm
in R2 of the tangent vector uT . The results con-
cerning the existence of solutions to (1) - (7) can
be found in (2).

Let us recall from (3) the cost functional ap-
proximating the normal contact stress on the con-
tact boundary

Jφ(u(Ω)) =
∫

Γ2

σN (u)φN (x)ds, (8)

depending on the auxiliary given bounded func-
tion φ(x), x ∈ Ω. Let us denote by Uad the set
of admissible domains. Consider the following
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shape optimization problem: For a given func-
tion φ, find a domain Ω? ∈ Uad such that

Jφ(u(Ω?)) = min
Ω∈Uad

Jφ(u(Ω)), (9)

where σN and φN are the normal components of
the stress field σ corresponding to a solution u

satisfying (1) - (7) and the function φ, respec-
tively.

3. OPTIMALITY CONDITIONS

In the paper the optimality conditions for struc-
tural optimization problem (9) are formulated.
Using material derivative method (1; 3) as well
as asymptotic expansion method (1; 4) we cal-
culate shape as well as topological derivatives
of the cost functional (8). Finally the optimality
condition for simultaneous shape and topology
optimization problem is formulated.

4. LEVEL SET METHODS

In the paper the level set method (5) is employed
to solve numerically problem (9). Consider the
evolution of a domain Ω under a velocity field
V . Let t > 0 denote the time variable. Under
the mapping T (t, V ) we have

Ωt = T (t, V )(Ω) = (I + tV )(Ω), t > 0.

By Ω−t we denote the interior of the domain Ωt

and by Ω+
t we denote the outside of the domain

Ωt. The domain Ωt and its boundary ∂Ωt are
defined by a function Φ = Φ(x, t) : R2 ×
[0, t0) → R satisfying





Φ(x, t) = 0, if x ∈ ∂Ωt,

Φ(x, t) < 0, if x ∈ Ω−t ,

Φ(x, t) > 0, if x ∈ Ω+
t ,

(10)

i.e., the boundary ∂Ωt is the level curve of the
function Φ. Assume that velocity field V is
known for every point x lying on the boundary
∂Ωt, i.e., with Φ(x, t) = 0. Therefore the equa-
tion governing the evolution of the interface in
D × [0, t0] has the form (5)

Φt(x, t) + V (x, t) · ∇xΦ(x, t) = 0, (11)

where Φt denotes a partial derivative of Φ with
respect to the time variable t.

5. NUMERICAL METHODS

The structural optimization problem (9) is solved
numerically as the shape and topology opti-
mization problem. First the shape optimization
problem is solved using the described level set
method. In equation (11) velocity field V is set
equal to the shape gradient of the cost functional
(8). When the decrease in the cost functional
value is less than the prescribed tolerance value
the topology optimization problem is solved. The
finite element method is used as the discretiza-
tion method. Numerical results are provided.
Obtained numerical results shows that the pro-
posed algorithm allows for significant improv-
ments from one iteration to the next.
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65–246 Zielona Góra, Poland, e-mail: {d.ucinski}@issi.uz.zgora.pl

Keywords: distributed parameter systems, sensor location, fault detection, parameter estimation, algorithmic
optimal control

1. INTRODUCTION

Although we witness an extremely fast develop-

ment of methods of Fault Detection and Isolation

(FDI) for dynamical systems in the last decade

(1), (2), (3), (4), there is a grave lack of the

corresponding effective techniques dedicated to

distributed parameter systems (DPSs). Further-

more, within the framework of FDI systems, the

optimization of data acquisition process which

increases the reliability of the diagnosis is most

often neglected and the contributions are very

scarce. Within the framework of diagnostics, the

crucial difficulty is the definition of a suitable cri-

terion describing the relations between the qual-

ity of the system diagnosis and the observation

strategy. One of the most prospective approaches

in this context is to make use of techniques orig-

inating in parameter estimation, see the works

(5) and (6) where the appropriate performance

measure, the so-called Ds-optimality criterion,

defined on the Fisher Information Matrix (FIM)

associated with the unknown system parameters,

was used as a measure of the ‘goodness’ of exper-

imental conditions. Nevertheless, more efforts

are needed in order to adapt this approach in the

context of modern measurement systems encoun-

tered in applications.

In order to estimate the unknown parameters

of DPS models in the form of partial differential

equations (PDEs), the system’s behaviour or re-

sponse is observed with the aid of some suitable

collection of sensors termed the measurement or

observation system. For variables which can be

measured on-line, it is usually possible to make

the measurements continuously in time. How-

ever, it is generally impossible to measure pro-

cess states over the entire spatial domain. What is

more, the measurements are inexact by virtue of

inherent errors of measurement associated with

transducing elements and also because of the

measurement environment.

The inability to take distributed measurements

of process states leads to the question of where

to locate sensors so that the information con-

tent of the resulting signals with respect to the

distributed state and PDE model be as high as

possible. This is an appealing problem since

in most applications these locations are not pre-

specified and therefore provide design parame-

ters. The importance of sensor planning has

already been recognized in many application

domains, e.g., air quality monitoring systems,

groundwater-resources management, recovery of

valuable minerals and hydrocarbon, model cali-

bration in meteorology and oceanography, haz-

ardous environments and emerging smart mate-

rial systems.

The sensor location problem was attacked

from various angles, but the results communi-

cated by most authors are limited to the selection

of stationary sensor positions (for reviews, see

(7), (8), (9)). An appealing alternative to such an

approach is to apply spatially-movable sensors,

which leads to the so-called continuous scanning

observations. This is somewhat intimidating be-

cause of the complexity of the resulting optimiza-

tion problem, but in recompense for such efforts

a number of benefits are derived. This is due

to the fact that sensors are not assigned to fixed

positions which are optimal only on the average,

but are capable of tracking points which provide

at a given time moment best information about
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the parameters to be identified. Consequently, by

actively reconfiguring a sensor system we can ex-

pect the minimal value of an adopted design cri-

terion to be lower than the one for the stationary

case. It is important to note that planning tech-

niques developed for moving sensors can prove

useful in many areas of automation. A possibil-

ity of using moving observations does arise in

a variety of applications, e.g., air pollutants in

the environment are often measured using data

gathered by monitoring cars moving in an urban

area and atmospheric variables are measured us-

ing instruments carried in an aircraft. What is

more, technological advances in communication

systems and the growing ease in making small,

low power and inexpensive mobile systems now

make it feasible to deploy a group of networked

vehicles in a number of environments (10), (11).

A cooperated and scalable network of vehicles,

each of them equipped with a single sensor, has

the potential to substantially improve the perfor-

mance of the observation systems. Applications

in various fields of research are being developed

and interesting ongoing projects include exten-

sive experimentation based on testbeds. The

problem to be discussed in this paper cought

our attention while working on one of such ex-

perimental platforms, namely the MAS-net lab

testbed being a distributed system equipped with

two-wheeled differentially driven mobile robots

capable of sensing the states of DPSs described

by diffusion and wave equations (12), (13).

In this work we outline an approach to deter-

mine Ds-optimal sensor nodes trajectories whose

measurements are supposed to serve as a base

for fault detection for a DPS defined in a two-

dimensional spatial domain. As will be shown,

this formulation allows for maintaining a low

complexity regarding possible implementations

of the resulting strategy in practice. Moreover,

we also show how the proposed formulation can

be transformed into an equivalent optimal con-

trol problem in Mayer form, which can be ef-

ficiently solved by the Matlab toolbox Riots, a

high-performance tool for solving optimal con-

trol problems (15). The paper will be illustrated

with numerical examples regarding determina-

tion of optimal sensor schedules for a parabolic

DPS.
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1. INTRODUCTION 

 
The paper describes metaheuristic optimisation 
of permanent magnet generator (PMG) design 
problem based on the novel finite element 
analysis model (Woźniak). This is nonlinear 
optimisation problem with many constraints 
with five objectives what is very challenging for 
most Pareto evolutionary multiobjective (EMO) 
algorithms. The majority of citations on EMO 
deal problems with lower dimensionality (Deb). 
Increasing criteria number causes difficulties in 
terms of reduced selection pressure for better 
solutions, runtime increase, as well as results 
visualisation to the decision maker problems. 
The dimensionality reduction is very appealing 
approach to ease this problems. 
In this paper two procedures of dimensionality 
reduction are applied to the finite element PMG 
EMO design: principal component analysis 
(PCA) and partial dominance structure 
preservation (PDSP) based on δ-dominance 
approach (Brockhoff). Results are compared. 
This paper has the following outline. Section 2 
provides basic concepts on the dimensionality 
reduction problem. Section 3 contains the PMG 
design problem introducing the finite element 
model. Section 4 includes analysis of the PMG 
design problem objective space and EMO 
computational setup details. Results of 
the Pareto optimisation and dimensionality 
reduction are analysed in details. 
 

2. PROBLEM FORMULATION 
 

In this paper a minimisation problem is 
considered with n objective functions 

: →if X R  from set F, each mapping 
solution x∈X from decision space X, to an 
objective vector z∈Z from objective space Z, 
with partial order ⊆ ×rel Z Z defined. 
The considered methods of dimensionality 
reduction seek the minimal set of objectives that 
can explain most of the design problem variance 
in the objective space. 
 

3. DESIGN ISSUES 

This section presents the full model and design 
constants of the PMG for the finite element 
analysis with the flat parameterisation. The  two 
decision arguments {D, h}, are defined in Fig. 1. 
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Fig 1. Machine dimensions and definition 
of optimisation problem arguments {D, h}. 

The five objectives of the PMG MO problem are 
strongly nonlinear functions of the arguments. 
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4. OPTIMISATION OF THE PMG 
 

In this Section the analysis all objectives are 
presented (as in Fig. 2) in the form of set of 3D 
views of surfaces generated for a set of solutions 
defining the mesh nodes Xnodes in the decision 
space. The Pareto set for the finite element 
PMG design cannot be considered as approxi-
mation of convex set. 

 
Fig. 2. Mesh 3D view of all scaled objectives 
of the PMG design problem 

For the PMG EMO design the NSGA II was 
implemented within the MATLAB for Windows 
workspace. Dimensionality reduction by means 
of PCA NSGA II procedure (Deb) was 
performed. Sample results of the first step 
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i.e. elements of the eigenvector v1 correspond-
ing to the largest eigenvalue λ1 (first principal 
component) shows that the first and second 
objectives are the least conflicting. 
The same result is obtained in the first step of 
the PDSP-based procedure. It is presented in 
form of the parallel coordinates plot in Fig. 3. 

 

Fig. 3. Parallel coordinates plot. 
The correlation assessments hold locally at 
the dominating solutions approximations, but 

not in set Xnodes evenly distributed (as mesh in 
Fig.2) in the two-dimensional decision space. 
Consecutive steps of objectives reduction are 
described, results of the PCA NSGA II, and 
PDSP-based procedure are compared and 
discussed in final form of the paper. 
This paper provides a basis for further research 
on design methods with a more detailed PMG 
models, including saturation of the magnetic 
circuit and 3D analysis. On the basis of this 
results author plans further research on 
shortening the Pareto front approximation to 
reflect decision maker’s preferences. 
 

5. CONCLUSIONS 
 

In this paper results of application of two 
different methodologies, namely principal 
component analysis (PCA) and the one based on 
partial dominance structure preservation (PDSP) 
are presented and compared. The PDSP showed 
to be more restrictive, and let to reduce only two 
objectives (i.e. from five to three) what has been 
visualised on parallel coordinates plots. 
This study is a continuation of author’s research. 
The key contributions are: 
– results for five-objective problems 

dimensionality reduction. To the author’s 
best knowledge these are the first real-
world show-case problem results for the 
PDSP δ-dominance approach (Brockhoff) 
presented, 

–  a comparison between dimensionality 
reduction results of EMO fine element 
design of the PMG, using the PCA NSGA 
II, and PDSP-based procedure. 
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Nonlinear stochastic optimization problems with probabilistic constraints are examined. The concept of 
a p-efficient point of a probability distribution is used to derive equivalent problem formulations, and 
necessary and sufficient optimality conditions are derived. Lagrangian relaxation of the problem is 
analyzed, the dual functional and its subdifferential.  

Two algorithms for solving the dual problem are developed. The algorithms are based on cutting plane 
techniques for approximation of the dual functional and the p-efficient frontier. The algorithms yield an 
optimal solution for problems involving r-concave probability distributions. For general probability 
distributions the algorithms provide an optimal solution of the convexified problem, and a suboptimal 
solution of the original problem, as well as upper and lower bounds for the optimal value of the original 
optimization problem. 

The results are applied to solve a bond portfolio problem with probabilistic liquidity constraint. 
Numerical illustration is provided which demonstrates the numerical efficiency of the methods. 

This is a joint work with Darinka Dentcheva, Stevens Institute of Technology, and Andrzej 
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1 Introduction

Our aim is twofold in this paper: to show via
computing numerical examples ranging from
one-hundred to one-thousand dimensional in-
tegration problems, that normal probabilities
of sets can be computed in thousand di-
mensions in a few minutes and second: the
efficiency of some estimators does not de-
crease with increasing the number of dimen-
sions. The examples concern the computa-
tion of the probabilities of convex sets (polyhe-
dra and hyperellipsoids) in case of multidimen-
sional normal probabilities. The FORTRAN
subroutines used in testing can be found at
www.uni− corvinus.hu/ ∼ ideak1.

2 Efficiency

Assume, that we have two Monte Carlo estima-
tors Θ1 and Θ2 for computing a given integral
I, where E(Θ1) = E(Θ2) = I, with variances
D2(Θ1) and D2(Θ2), and the times necessary
to evaluate the estimators are t1 and t2 respec-
tively. Then the efficiency of the second esti-
mator with respect to the first one is defined
[3] as

Efficiency =
t1D

2(Θ1)
t2D2(Θ2)

. (1)

This measure of efficiency is used to compare
different Monte Carlo estimators, and this is
generally thought to be declining with increas-
ing the number of dimensions.

3 Computing multidimen-
sional normal probabilities

Consider the density function ϕ and the dis-
tribution function Φ of the n-dimensional nor-
mal distribution with mean 0 and correlation
matrix R. In this case the probability of the
n-dimensional set X is

I = Pr{X} =
∫

X
ϕ(z)dz =

∫
Rn

f(z)dΦ(z).

(2)
The crude estimator suggested by the

right hand side can be given as follows. Gen-
erate samples xi, i = 1, . . . , N of the normal
random variable ξ with density function ϕ and
compute an unbiased estimator of I as

Θ1 =
1
N

N∑
i=1

f(xi). (3)

The efficiency of all other estimators is given
with respect to this basic estimator thorough
this paper.

A normally distributed random vector ξ can
be written as ξ = χnTη, where χn is a χ-
distributed scalar random variable, with n de-
grees of freedom, T is an upper triangular ma-
trix, for which TT ′ = R, and the vector η is
uniformly distributed on the surface of the unit
sphere S = {x|

∑n
i=1 x2

i = 1}. Note, that χn,
and η, are independent. Let us denote the dis-
tribution function of the χ-distributed random
variable by K(s), s ≥ 0 and the distribution
function of η by V (y),y ∈ S. Then
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I =
∫

Rn
f(sTy)dK(s)dV (y) = (4)∫

S

(∫ ∞

0
f(sTy)dK(s)

)
dV (y).

Introducing a notation for the inner integral

g(y) =
∫ ∞

0
f(sTy)dK(s),

clearly the function g(y) gives the probability
content of that portion of the ray λTy, λ ≥ 0,
which lies inside the set X. Since for con-
vex bodies bounded by linear or quadratic
constraints the intersection of a line with the
boundaries can be evaluated, thus for these
cases the function g(y) can be evaluated (it
is the difference of two χ distribution func-
tion values). Define the following function
e(y) = (g(y) + g(−y)) /2 which is the result
of applying the same idea to the vectors y and
−y simultaneously.

Consider now a random orthonormalized
system U of vectors on S, U = {ui, i =
1, . . . , n|ui ∈ S, (ui)

′
(uj) = δij , i, j = 1, . . . , n}.

Then consider the normalized sum of any two
vectors from U , that is let

vi,j,s =
1√
2

(
s1ui + s2uj

)
,

where the pair of indices i, j and the sign vector
s runs through all possible triplets from the set

J∗ = {(i, j, s)|i = 1, . . . , n, j = 1, . . . , n, i < j,

s1 = 1, s2 = 1, or s1 = 1, s2 = −1}. (5)

The previous estimator is applied to the re-
sulting n(n− 1) vectors vi,j,s: this is called the
orthonormalized− 2, or O2 estimator.

So the complete estimator O2 for N = 1 sys-
tem U , when two vectors from U are added and
subtracted in all possible ways, has the form

O2 =
1

n(n− 1)

∑
(i,j),s∈J∗

e
(
Tvi,j,s

)
=

1
n(n− 1)

∑
(i,j),s∈J∗

e

(
1√
2

(
s1Tui + s2Tuj

))
.

This is called the orthonormalized-2, or O2 es-
timator. Obviously, in actual computation we
generate N diferent systems U and average the
results.

4 Numerical results

To test the efficiencies of the orthonormalized
estimators we computed the probabilities of a
great number of randomly generated sets (poly-
hedra and hyperellipsoids). Computer experi-
ences were carried out on a PC, with a 2.8 GHz
processor, memory of 1 Gbyte, in dimensions
up to n = 1000.

To summarize our experiences we can state,
that about three accurate digits of probabil-
ity can be obtained in 10–30 minutes even in
n = 1000 dimensions. We obtained an average
efficiency of 10–100 for examples from n = 100
to n = 1000 dimensions for polyhedra. For
random hyperellipsoids our findings are about
the same as for polyhedra: the efficiency re-
mains between 10 and 1000 for n-dimensional
sets. The efficiencies were somewhat greater
for hyperellipsoids than for polyhedra.

We believe, that the reason, why effi-
ciency does not deteriorate with increasing
the number of dimensions is the following:
an orthonormalized-2 estimator computes the
function value at O(n2) points (as compared
to the crude estimator, where the number of
function evaluations can be kept constant – to
preserve the same standard deviation of esti-
mator Θ1). This number of function evalua-
tions is computationally feasible and sufficient
to preserve the efficiency.
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1. INTRODUCTION

The determination of the shortest path in a given
graph i.e. the classical shortest path problem
(CSPP) is one of the basic problems of com-
putational geometry. It has been discussed and
many algorithms were proposed in the literature.
See, for instance (Ahuja et.al, 1993), (Cormen
et.al, 1990). Usually the authors consider the de-
terministic models where distances between ver-
tices are deterministic. In only a few papers this
problem was stated in random case when the dis-
tances are defined by random variables and some
algorithms were proposed (Murthy et.al, 1996),
(Murthy et.al, 1997).

In this paper the static random shortest path
problem with the second moment criterion is dis-
cussed and a comparison of proposed exact and
approximate algorithm is given.

2. PROBLEM STATEMENT

Let G = (V,E) be a directed graph with a finite
set of vertices V and a set of edges E ⊆ V ×V .
Further, let s ∈ V be a source vertice and let
t ∈ V be a destination vertice.

In the Random Shortest Path Problem (RSPP)
each edge e ∈ E is associated with a random
variable Te taking positive values. The goal
is to find the path, from the source vertice s

to the destination vertice t, which minimize a
function of moments of random variables related
with edges of the path. We also assume that
the random variables Te, for e ∈ E, are inde-
pendent. We propose to consider a criterion
that is a minimal sum of the variance and a

square of the expected value of the sum of ran-
dom variables related with edges of the path, i.e.
the second moment of the sum of random vari-
ables related with edges of the path, because of
(E[X])2 + V[X] = E[X2]. Similar criterion
has been considered by I. Murthy and S. Sarkar
in (Murthy et.al, 1996).

Now we formulate the RSPP with criterion of
the second moment. Let

P = {〈v0, v1, . . . , vn−1, vn〉|v0 = s ∧ vn = t ∧

∧ (v0, v1), . . . , (vn−1, vn) ∈ E}

be a set of all paths from the source vertice s to
the destination vertice t. The goal in the RSPP
is to find a path 〈v0, v1, . . . , vn−1, vn〉 ∈ P such
that

E
[( n∑

i=1

T(vi−1,vi)

)2]
=

= min
〈u0,u1,...,um−1,um〉∈P

E
[( m∑

i=1

T(ui−1,ui)

)2]
.

To show that the problem can not be solved
directly, for instance by Dijkstra algorithm it is
presented an example of a random graph where
the application of the Bellman Principle of opti-
mality fails, i.e. where the subpath of the shortest
path is not the shortest subpath.

3. MAIN RESULTS

In this section exact algorithms and approximate
algorithms are introduced. It will be shown that
the RSPP with the second moment criterion re-
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duces to the Multi-objective Shortest Path Prob-
lem (MOSPP), thus the RSPP can be solved with
a help of general methods for solving the MO-
SPP. First, two exact algorithms are presented,
namely Extended Bellman-Ford algorithm (EBF)
with a modified procedure of the relaxation of
edge and a Generic Label Correcting algorithm
(GLC) which is a kind of generalization of the
classical Dijkstra algorithm. In this algorithm
relaxations of edges are coming in a little bit
more natural order than in the EBF algorithm.
Unfortunately, the time complexity and also the
space complexity of these general algorithms are
exponential. Therefore a few approximate al-
gorithms with the polynomial time complexity
are proposed. One of them is a modification
of EBF algorithm in which we have to assign
with each vertice the list of all nondominated
cost vectors related with all paths to this vertice.
Unfortunately, for this reason EBF algorithm has
an exponential complexity. The proposed ap-
proximate algorithm is a natural modification of
EBF which assigns with the each vertice the list
of a fixed number (the same for all vertices) of
cost vectors. Another approximate algorithm
is the Single Criterion Approximation algorithm
(SCA). The idea of the algorithm is based on
the fact that the RSPP with the second moment
criterion reduces to the MOSPP. In this algo-
rithm we permanently calculate the shortest path
with respect to the one criterion and remove from
the graph the edge with the greatest value of the
second criterion.

The last proposed approximate algorithm is a
variant of the algorithm presented in (Tsaggouris
et.al, 2005) and (Tsaggouris et.al, 2006). The
algorithm is a modification of classical Bellman-
Ford algorithm to the MOSPP. In this algorithm
we first estimate for each vertice v the minimal
and the maximal distance from the source vertice
s to the vertice v. Next, if some path from
the source vertice s to the vertice v has the first
criterion cost µ then we store the second criterion
of the path at the position⌈

k · µ− µmin(v)
µmax(v)− µmin(v)

⌉
,

where µmin, µmax are the estimated minimal and
maximal distances and k is the size of the array.

4. COMPUTATIONAL RESULTS

We performed our tests on quite large randomly
generated graphs. Moreover, used graphs had
from 10000 to 30000 vertices and each vertice
had 10 outcoming edges. All the tests was made
on Intel Celeron Mobile 1400MHz with 256MB
RAM, working under control of Linux operating
system with kernel version 2.6.11-6. Obtained
results shows that the first proposed approximate
algorithm works very well, i.e. its works very
quickly and usually produce exact answer. The
SCA algorithm is not so good and the last one
works very longly, because the main loop of this
algorithm usually can not be broken.

5. CONCLUSIONS

Computational results of the test of the presented
exact and approximate algorithms, show that the
approximate algorithms are much faster than the
exact ones and could be very useful, for exam-
ple, as a first approximation stage of some more
difficult algorithm solving the RSPP. Moreover,
carried out detailed analysis of different data rep-
resentations can be used for solving the RSPP
with criterion of higher moments.
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1. INTRODUCTION 

 
There are many algorithms, traditional 
computation or evolutionary computation, for 
single-objective optimization problems. 
Almost all focus on the determination of 
positions neighbouring an optimal solution and 
handle constraints based on violated 
constraints. We can suppose that every 
decided variable of an optimization problem 
has digits that are listed from left to right; we 
have our remarks as follows:  
• To evaluate objective function, the role of 

left digits is more important than the role 
of right digits of a decided variable; we 
calculate the changing probabilities of the 
appearance of a better solution than the 
current one on each iteration, and on the 
performance of SP algorithm, we create 
good conditions for its appearance.  

• Based on the relation of decided variables 
in the formulas of constrains and objective 
function we select k variables (1≤k≤n) to 
change their values instead of selecting all 
n variables on each iteration.  

• Because we can not calculate exactly the 
number of iterations of a stochastic 
algorithm for searching an optimal 
solution the first time on each 
performance, we use unfixed number of 
iterations, which has more chance to find 
an optimal solution the first time with 
necessary number of iterations.  

Based on these remarks we introduce a new 
stochastic algorithm, Search via Probability 
(SP) algorithm, the SP algorithm uses 

probabilities to control the process of 
searching for optimal solutions.  
 
 

2. THE MODEL OF SINGLE-
OBJECTIVE OPTIMIZATION 

PROBLEM 
 
We consider a model of single-objective 
optimization problem as follows: 
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3. PROBABILITIES OF CHANGES AND 
SELECTING VALUES OF A DIGIT 

 
We suppose that every decided variable xi 
(1≤i≤n) has m digits that are listed from left to 
right xi1, xi2,…, xim (xij is an integer and 
0≤xij≤9, j=1, …,m). We calculate changing 
probabilities of digits which can find better 
values than the current ones on each iteration. 
3.1. Probabilities of changes 
Consider the j-th digit xij of variable xi, let Aj 
be an event that digit xij can find a better value 
than the current one (1≤j≤m). Event Aj is more 
important than event Aj+1, it means that the 
occurrence of event Aj has a decisive influence 
on the occurrence of event Aj+1 and after event 
Aj occurs a certain number of times, it will 
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create good conditions for event Aj+1 to occur. 
Let qi (i=1,…, m) be probability of Ai, ri  be 
number of iterations of event Ai (r i≥1, i=1,…, 
m). Because A1,A2,…,Ai are independent of 
one another, these probabilities are maximum 
if  

),,3(/ mirrq
mk

ik
kii K== ∑

=

=  
Because left events are more important than 
right events, it means that left events are more 
stable than right events, we have: 

mrrr ≤≤≤ K21  
Therefore: 

)1/(121 imqandqqq im −+≤≤≤≤ K  
Ex: Let r1=r2=…=rm=1, we have: 
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We have average probabilities of changes: 

)1()1
2
11(1 mj

jj
p j ≤≤+++= K

 
and m=7,  we have: 
      p=(0.37, 0.41, 0.46, 0.52, 0.61, 0.75, 1) 

The changing probabilities of digits of a 
variable increase from left to right. This 
means that left digits are more stable than 
right digits, and right digits change more 
than left digits. In other words, the role of 
left digit xij is more important than the role 
of right digit xi,j+1 (1≤j≤m-1) for evaluating 
objective function. 
3.2. Probabilities for selecting values of a 
digit. 
Consider j-th digit with changing probability 
qj, let R1 be the probability of choosing a 
random integer number between 0 and 9 for j-
th digit,  let R2 be probabilities of j-th digit 
incremented by one or a certain value, let R3 
be probabilities of j-th digit decremented by 
one or a certain value. The average 
probabilities of R1, R2 and R3 are:  

R1=0.5, R2=R3=0.25. 
 
 
4. SELECTING K VARIABLES (1≤K≤N) 

TO CHANGE THEIR VALUES 
 
On each iteration, if we select n variables to 
change their values, the ability of finding a 
better solution than the current one can be very 
small. Therefore we select k variables (1≤k≤n) 
to change their values, and after a number of 
iterations the algorithm has more chance to 
find a better solution than the current one.  
 

 
5. THE RANDOM SEARCH VIA 
PROBABILITY ALGORITHM 

 
The main idea of SP algorithm is that variables 
of problem are separated into discrete digits, 
and then they are changed with the guide of 
probabilities and combined to a new solution. 
The SP algorithm has the following 
characteristics: The SP algorithm finds a better 
value than the current one of digits one by one 
from left digits to right digits of every variable 
with the guide of probabilities. Variable Loop 
that counts number of iterations will be set to 0 
if SP algorithm finds a better solution than the 
current one; this means that SP algorithm can 
find an optimal solution the first time after a 
necessary number of iterations.  
 
 

6. EXAMPLES 
 
We chose 5 engineering optimization 
problems as follows: 
1. Design of a Welded Beam.  

The version of Coello. 
The version of Ray and Liew. 

2. Design of a Pressure Vessel. 
3. Minimization of the Weight of a  
    Tension/Compression String. 
4. Minimization of the Weight of a Speed  
    Reducer. 
We tested this approach by implementing 
the SP algorithm on 6 test single-objective 
optimization problems, and we found very 
good and stable results. 
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1. INTRODUCTION

The aim of this paper is to study the Bounded

Input Bounded Output (BIBO) stability of bilin-

ear systems. The stability of linear systems can

be studied by computing their transfer function.

In this paper, we use the generating series (gen-

eralization of the transfer function) as a tool for

analysing the stability of bilinear systems. In

fact, the generating series G of a bilinear system

is a formal power rational series in noncommuta-

tive variables. It provides a formal expression of

the output y = ε(G) in iterated integrals form.

The stability/stabilization can be always studied

from the generating series G: According to ex-

pression of G, three cases occur. In the first case,

the output y = ε(G) can be explicitly computed;

in the second case, this output can be bounded

(or unbounded) if the input u(t) is bounded; in

the third case, no conclusion about the BIBO

stability can be easily deduced. Then, we look

only for a stabilizing constant input u(t) = η, by

studying the univariate series Gη

2. METHOD

A bilinear system (B) with inputs (ui(t))1≤i≤m

and drift u0(t) ≡ 1 is given by its state equations

(B)

{

x(1)(t) = (M0 +
∑m

i=1 ui(t)Mi)x(t)

y(t) = λ.x(t)
(1)

where x(t) ∈ Q, R−vector space,

M0, M1, · · · , Mm, λ are R−linear.

• We compute the rational expression associated

with the expansion of its generating series G built

on the alphabet Z = {z0, z1, · · · , zm}

G = λ.x(0)+
∑

ν≥0

m
∑

j0,···,jν=0

λ.Mj0 · · ·Mjν
x(0)zj0 · · · zjν

by generalizing the Schutzenberger’s method (4)

for computing the rational expression describing

a rational series.

• From the rational expression of G, we obtain

a formal expression of the output (1)

y(t) =
∑

w∈Z∗

〈G|w〉

∫ t

0
δ(w) =

∫ t

0
δ(G) = ε(G)

by computing directly the iterated integral
∫ t

0 δ(G) where G is a rational expression.

• According to the form of G, three cases occur

1. G is a simple rational expression :

G = zp
0(c0z0)

∗, zp
0(c1z1)

∗, zp
i (c0z0)

∗,

zp
i (cizi)

∗, (c0z0)
∗zp

i , (cizi)
∗zp

0 , · · · ci ∈ R

Then we compute explicitly y(t) = ε(G) and

deduce the BIBO stability/instability.

We obtain also an explicit computing of y(t)

when G is a shuffle product of such sim-

ple rational expressions since ε(G1 ⊔ G2) =

ε(G1)ε(G2).

2. G is a concatenation product of

some simple rational expressions:

(c0zj0)
∗p0zi1(c1zj1)

∗p1 · · · zik(ckzjk
)∗pk

We use the theorem of Hoang Minh (3) :

Theorem 1:

∀k, let us suppose that Gk is exchangeable

and let us denote ε(Gk) by gk(ξ(t))

gk(ξ(t)) = gk(t, ξ1(t), · · · , ξm(t))

where ξj(t) is the primitive of the input

uj(t) cancelling for t = 0. Then, ∀k, the

series

Sk = G0zi1G1 · · · zikGk

where zi1 , · · · , zik ∈ Z, has the following

evaluation:

ε(Sk) = y(t) =
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∫ t

0

∫ τk

0
· · ·

∫ τ2

0
g0(ξ(τ1))g1(ξ(τ2) − ξ(τ1)) · · ·

gk(ξ(t) − ξ(τk))dξzi1
(τ1) · · · dξzik

(τk)

So we can prove that |y(t)| is bounded (or

unbounded) if |u(t)| is bounded and study the

BIBO stability

3. No conclusion seems available about the

BIBO stability by using the generating

series.

For a single input system with drift (B)

we prove the following proposition and

corollaries.

Proposition 1

The output (ε(G))η of (B), the generating

series of which is G, for the constant input

u(t) = η, is equal to the output ε(Gη)

of some system, the generating series of

which is Gη, obtained by substituting ηz0

to z1 in G.

Corollary 1

A necessary condition for the BIBO sta-

bility of (B), is that, for every η ∈ R, the

real part of the poles of Gη is ≤ 0 and the

imaginary poles of Gη are single.

Corollary 2

If there exists η such that every pole of

Gη has a negative real part and if every

imaginary pole is single, then u(t) = η is a

stabilizing input

So we look only for stabilizing constant

inputs ui(t) = ηi, by studying the univariate

series Gηi
.

• Example : Bilinear approximants of the

electric equation (2)

v̇(t) = −k1v(t) − k2v
2(t) + u(t) (2)

1. At order 2

A bilinear system (B2) approximating it at

order 2 is







x(1)(t) = (

(

0 0

a(0) a(1)

)

+ u(t)

(

0 0

1 0

)

)x(t)

y(t) = (x(0) 1) x(t)

The rational expression is:

G2 = (a(0)z0 + z1)(a
(1)z0)

∗ + x(0)

By theorem 1, (B2) is not BIBO for a(1) > 0

and is BIBO for a(1) < 0 (if M1 ≤ u(t) ≤ M2

then ε(G2) is bounded)

For instance, for x(0) ≥ 0, a(0) > 0, a(1) <

0, 0 ≤ u(t) ≤ M , then

y(t) ≤ x(0) + M+a(0)

−a(1)

2. At order 3

The generating series is,

for a(1) 6= 0, a(2) 6= 0:

G3 = (z1+a(0)z0)(a
(1)z0+(z1+a(0)z0)a

(2)z0)
∗+x(0)

G3,η = x(0) +
(a(0) + η)z0

1 − a(1)z0 − (a(0) + η)a(2)z2
0

If η = −a(0) then |y(t)| is bounded (y3,η(t) =

x(0)) else we decompose G3,η in partial frac-

tions for studying the stabilizing inputs.

3. CONCLUSIONS

The BIBO stability of a bilinear system cannot be

generally studied by considering its state equa-

tion. In this paper, we use the “evaluation” of

its generating series G. If the rational expres-

sion of G is simple or obtained by concatenating

some simple rational expressions, then the use of

the generating series of the system provides an

answer about the stability and a bound for the

output. Otherwise, we can look for a stabilizant

constant input u(t) = η by using the univariate

series Gη.
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[4] Schutzenberger M.P., On the definition of a fam-
ily of automata Inform. Contr., n0 4, 1961, pp
245-270.

377



Control of an Industrial Rolling Process Using The Theory of Switched
Repetitive Processes

Jacek Bochniak, Krzysztof Galkowski, Eric Rogers, Joerg Velten
Faculty of Electrical Engineering, Computer Science and Telecommunications,

University of Zielona Gora, Poland
{jbochnia,kgalkows}@uz.zgora.pl

School of Electronics and Computer Science, University of Southampton, United Kingdom
etar@ecs.soton.ac.uk

Faculty of Electrical, Information and Media Engineering, University of Wuppertal, Germany
{galkowsk,velten}@uni-wuppertal.de

Keywords: Multiprocess dynamics, Switching values, Two-dimensional systems, Stability, Stabilization

1. INTRODUCTION

The unique characteristic of a repetitive pro-
cess (also termed a multipass process in the
early literature) can be illustrated by consider-
ing machining operations where the material or
workpiece involved is processed by a series of
sweeps, or passes, of the processing tool. As-
suming the pass length α < +∞ to be con-
stant, the output vector, or pass profile, yk(p),
p = 0, 1, . . . , (α− 1), (p being the independent
spatial or temporal variable), generated on pass
k acts as a forcing function on, and hence con-
tributes to, the dynamics of the new pass profile
yk+1(p), p = 0, 1, . . . , (α − 1), k = 0, 1, . . . .

This, in turn, leads to the unique control prob-
lem in that the output sequence of pass profiles
generated can contain oscillations that increase
in amplitude in the pass-to-pass direction, i.e. in
the collection of pass profile vectors {yk}k.

Industrial examples include long-wall coal-
cutting and metal rolling, see the original pa-
pers cited in, for example, (3) for further de-
tails. A number of so-called algorithmic exam-
ples also exist where adopting a repetitive process
setting for analysis has clear advantages over al-
ternative approaches to systems related analysis.
These include iterative learning control schemes,
e.g. (2) and iterative solution algorithms for dy-
namic nonlinear optimal control problems based
on the maximum principle. In the case of itera-
tive learning control for the linear dynamics case,
the stability theory for differential (and discrete)
linear repetitive processes is one method which
can be used to undertake a stability/convergence

analysis of a powerful class of such algorithms
and thereby produce vital design information
concerning the trade-offs required between con-
vergence and transient performance.

In many practical applications, e.g. metal
rolling, or processing operations using multiple
operation robot arms, a number of passes may
be completed under one regime and then the
dynamics change to allow further processing to
take place. One way of modeling such a case is
by switching the dynamics from one state-space
model to an alternative (or alternatives) and this
paper continues the development of tools for the
analysis of such models.

Note also that there is one other form of
switching which can occur in repetitive process
dynamics, i.e. along the pass. Here, however, we
restrict attention to the pass-to-pass case since it
has more obvious and immediate practical appli-
cations.

In this paper we consider a metal rolling
process where the workpiece involved is passed
through two successive rolling operations which
are to be controlled to produce a desired final
product. We show that this can be modeled as a
discrete linear repetitive process which switched
dynamics in the pass-to-pass direction. Then we
develop new results on stability and control law
design and give an illustrative numerical exam-
ple.

2. PROCESS MODELING

In its simplest form a multi-roll roll system con-
sists of two separate pairs of rolls which are con-
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trolled by separate input signals, i.e. different
rolling forces. The deformation of the workpiece
takes place between these pairs of rolls with par-
allel axes revolving in opposite directions. The
metal strip to be rolled to a pre-specified thick-
ness (also termed the gauge or shape) through a
series of rolls for successive reductions — here
we consider the case when two sets of rolls are
used since the case of more than two follows as
a natural generalization.

In practice, a number of models of this pro-
cess can be developed depending on the assump-
tions made about the underlying dynamics and
the particular mode of operation under consider-
ation. The particular task is to develop a simpli-
fied (but practically feasible) model relating the
gauge on the passes through the rolls. The cur-
rent pass is denoted by y2k+2(t), the previous
passes – by y2k+1(t) and y2k(t).

As a starting point for analysis in this general
area, we consider the following discrete model,
which can be achieved by applying e.g. a back-
ward Euler discretization procedure to the differ-
ential model



x2k+1(p + 1) = A1x2k+1(p)
+B1u2k+1(p) + B01y2k(p),

y2k+1(p) = C1x2k+1(p)
+D1u2k+1(p) + D01y2k(p),

x2k+2(p + 1) = A2x2k+2(p)
+B2u2k+2(p) + B02y2k+1(p),

y2k+2(p) = C2x2k+2(p)
+D2u2k+2(p) + D02y2k+1(p),

over p = 0, 1, . . . , (α− 1), k = 0, 1, . . ..

This last model structure is precisely that of
a discrete linear repetitive process with dynam-
ics which switch in the pass to pass direction
after the completion of each pass. To complete
this model description, it is necessary to spec-
ify the boundary conditions, i.e. the initial state
vector on each pass and the initial pass pro-
file. Without loss of generality we can assume
that x2k+1(0) = d2k+1, x2k+2(0) = d2k+2, and
y0(p) = f(p), where the vectors d2k+1 and d2k+2

have known constant entries and the vector f(p)
has entries which are known functions of p.

3. STABILITY AND CONTROL
LAW DESIGN

The stability theory of repetitive processes con-
sists of two separate concepts, termed asymp-
totic stability and stability along the pass (3). In
effect, both of these are a form of bounded in-
put bounded output stability of the pass profile
sequence (recall the unique control problem for
these processes) where asymptotic stability de-
mands this property over the finite and constant
pass length and as a consequence that the se-
quence of pass profiles converge to a steady or
so-called limit profile as k →∞. The limit pro-
file is described by a standard (or 1D) discrete
linear systems state space model. The fact that
the pass is finite, however, could mean that this
limit profile is unstable, i.e. all eigenvalues of the
state matrix do not lie in the open unit circle in
the complex plane. (Over a finite duration even
a unstable 1D linear system can only produce a
bounded output.)

Stability along the pass prevents this undesir-
able situation by demanding the bounded input
bounded output property uniformly, i.e. inde-
pendent of the pass length.

The control aim here is to obtain the closed
loop process stable along the pass but also to
achieve the prescribed limit pass profile. For this
reason we consider a switched control law of the
form

u2k+1(p) = K1
1x2k+1(p) + K1

2y2k(p),
u2k+2(p) = K2

1x2k+2(p) + K2
2y2k+1(p),

To solve these problems we use a Lyapunov
approach which can be computed using numeri-
cally efficient optimization methods, called Lin-
ear Matrix Inequalities (LMI), see (1).
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1. PROBLEM STATEMENT  
 
Let us consider a linear dynamic system with 
scalar control  )(tu

)()()( tuBtXFtX +=& ,             (1) 
where – vector of 
state variables; – matrices with constant 
elements .  
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It is assumed that the function )(~
1 tx is obtained 

as a record of measurement ( ). ],0[ Tt ∈
Let us now consider the following problem: to 
find the control after action of which the 
solution  of system (1) satisfies the 
conditions: 
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where  is the functional of control quality; 
 is the functional space of controls; 

][uΩ
U X  is the 
functional space of vector functions of state 
variables; δ is a given value; .  is the norm in 
the respective space.  
In this paper we assume that the initial values 

 of state variables are 
unknown. 

)0(,...),0(),0( 32 nxxx

For example, the identification of external loads 
leads to problems of the type (2),(3),(4) [1,2,3]. 
There are also other practical problems which 
can be similarly formulated. Let us call this 
problem the problem of control under conditions 
of uncertainties.  
Problems of this type were formulated and 
investigated in works of N.N.Krasovsky [4], 
А.B.Kurzhansky [5] and others [6].  
 
 

2. METHOD OF SOLUTION 
 

It was shown that the uncertainties in the initial 
conditions  lead to 
occurrence of additional terms as delta-functions 
and their derivatives in the solution which 
concentrate at the point . A special filtra-
tion of the function 

)0(,...),0(),0( 32 nxxx

0=t
)(~

1 tx  was suggested for 
eliminating the influence of uncertainty in initial 
conditions. Thus, the initial problem (2),(3),(4) 
with unknown values  can 
be reduced to a problem with zero conditions 
(3). 

)0(,...),0(),0( 32 nxxx

If the functional of control quality is stabilizing, 
then the solution of problem (2),(3),(4) is stable 
to small changes of initial data [7].  
It is assumed that the relationship between the 
functions  and  has the form: )(1 tx )(tu

1xuC p = ,                      (5) 
where  is a compact operator (  
which depends on the parameter vector p of the 
mathematical model.  

pC XUC p →: )
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The solution of problem (2),(3),(4) can be 
reduced to the following extremal problem [7]: 

][inf][
,

0 uu
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If the coefficients of matrices  are defined 

with some errors ( , , 
), 

then the set of possible solutions in the extremal 
problem (6) has to expand to the set : 
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operator. 
The set  can be changed in some cases to a 

more narrow set  and the extremal 

problem (6) can be changed to the extremal 
problem: 

hQ ,δ

p
Dp

QQ ,
*

δ
∈

= U

  
][infinf]~[

,
0 uu

pQuDp
Ω=Ω

∈∈ δ
.           (8) 

It was shown that the solution of problem (8) 
exists, is unique and stable to small changes of 
initial data if  is a stabilizing functional 
[7].  

][uΩ

 
3. CONCLUSIONS 

 
An attempt has been made to consider a typical 
problem of identification as a problem of 
optimum control of dynamic system under 
conditions of uncertainty. An algorithm for its 
solution with the use of regularization method is 
offered. 
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1. INTRODUCTION

In this paper, we select the parabolic type
stochastic partial differential equation with
stochastic boundary inputs for the term struc-
ture dynamics. The stochastic boundary in-
puts are generated by the linear stochastic
equations with mean-reverting property. Not-
ing that the instantaneous forward process is
unobservable, we need to construct an obser-
vation mechanism from market instruments.
Choosing the yield curve data as the obser-
vation process, we set the finite dimensional
discrete- time observation mechanism. For
fixed parameters included in the parabolic
systems, the optimal filter is the Kalman fil-
ter which can be computed exactly. However
once we construct the augmented state includ-
ing the systems’ parameters, the linearity is
lost and the Kalman filter can not be applied.
For circumventing these difficulties, we pro-
pose a new algorithm which is a combination
of the Kalman filter for the state and the par-
ticle filter for the included parameters. For
checking the feasibility of the proposed algo-
rithm, several digital simulation studies are
performed.

2. MATHEMATICAL MODEL

Musiela [1] derives the Heath, Jarrow and
Morton arbitrage-free interest rate dynamics
under the time-to-maturity parameterization
as follows:

df(t, x) =
∂f(t, x)
∂x

dt+ ν(x)dt+ dw(t, x), (1)

where f(t, x) denotes the instantaneous for-
ward rate curve ,ν(x) is identified by using the

argument of absence of arbitrage and w(t, x)
is a Brownian motion process which depends
on x(time-to maturity). In order to support
the smoothness property of the forward pro-
cess f(t, x) with respect to x, the parabolic
type systems are proposed:

df(t, x) =
k

2
∂2f(t, x)
∂x2

dt+
∂f(t, x)
∂x

dt

+ν(x)dt+ dw(t, x), f(0, x) = fo(x), (2)

where x ∈ G =]0, T̂ [ and for simplicity we set

1
2
∂f(t, 0)
∂x

= µ00f(t, 0) + µ01f(t, T̂ )

+g0(t) + σ01g1(t) (3)

−1
2
∂f(t, T̂ )
∂x

= µ10f(t, 0) + µ11f(t, T̂ )

+g1(t) + σ10g0(t) (4)

where for i = 0, 1

dgi(t) = (aigi(t) + bi)dt+ σidwi(t), for . (5)

3. OBSERVATION MECHA-
NISM

It is well known that the instantaneous for-
ward rate is unobservable and Libor,FRA’s
(forward rate agreements) etc are market in-
struments. Hence the yield curve process is
constructed from these instruments. Noting
that the relation between the yield curve and
the forward rate process is theoretically given
by

Ỹ (t, T ) = log(1 + Y (t, T ))

=
1

T − t
∫ T−t

0
f(t, x)dx, (6)
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our observation can be set as the following
discrete-time type;

Ỹ (ti, Tk) =
1

Tk − ti

∫ Tk−ti

0
f(ti, x)dx+ εik

for i = 1, 2.3, · · · and k = 1, 2, 3, · · · , p (7)

where ε denotes the white Gaussian noise with
E{εik} = 0, and E{εikε`k} = σδik`m.

4. FILTERING PROBLEM

In this section, we assume that all parame-
ters included in system and observation are
known. Hence it is possible to construct the
optimal filter for the continuous-discrete sys-
tems (2) and (7). For the finite-dimensional
systems, Jazwinski [2] has proposed such an
optimal filter. Th extension to the infinite-
dimensional system is straightforward.

Now the minimum variance estimates of
f(t, x), g0(t) and g1(t) for ti ≤ t < ti+1 are
given by

f̂(t, x) = E{f(t, x)|Yti} (8)

and

~̂g(t) = [E{g0(t)|Yti} E{g1(t)|Yti}]′ (9)

for Yti = {~Y1, ~Y2, · · · , ~Yi} .

5. PARAMETER ESTIMATION

We denote the optimal estimates for the fixed
θ by f̂(t; θ) and ~̂g(t; θ), which are obtained
from the previous section. Hence with the aid
of Bayesian rule, we have for ti ≤ t < ti+1

E{f(t, x)|Yi} =
∫

Θ
f̂(t, x; θ)dP (θ|Yi),

E{~g(t)|Yi} =
∫

Θ
~̂g(t; θ)dP (θ|Yi)

E{θ|Yi} =
∫

Θ
θdP (θ|Yi).

To realize above equations , we need to
compute the conditional distribution P (θ|Yi)
which is given by

dP (θ|Yi) =
p(~Yi|θ)p(θ|Yi−1)dθ∫
θ p(~Yi|θ)p(θ|Yi−1)dθ

. (10)

By using an idea of particle filter algo-
rithm, we can realize (5):

• At t = 0 the M independent particles
{θ(0)
j }j=1,2,···,M are generated with the ini-

tial law P (θ).
• For 0 ≤ t < t1 obtain f̂(t−1 , ·; θ(0)

j ),

~̂g(t−1 ; θ(0)
j ), and Pgigi(t

−
1 ; θ(0)

j ).

• At t = t1, we obtain f̂(t+1 , ·; θ(0)
j ),

~̂g(t+1 ; θ(0)
j ), and compute

p(~Y1|θ(0)
j ) =

1√
2πσ

exp{− 1
2σ
|~Y1

−H1f̂(t+1 , x : θ(0)
j )|2}. (11)

• From (11), we get

P (θ(0)
j |Y1) =

p(~Y1|θ(0)
j )P (θ(0)

j )

ΣM
i p(~Y1|θ(0)

i )P (θ(0)
i )

(12)

where the distribution P (θ(0)
j is approxi-

mated by the empirical distribution deter-
mined by the set of particles,i.e., P (θ =
θ

(0)
j ) = 1

M .
• Hence at the time t1, we got the

optimal state and parameter estimates
E{f(t1, x)|Y1}, E{~g(t)|Y1} and E{θ|Yi}
from (??) with their optimal covariances,
respectively.
• At t = t1, we generate the M indepen-

dent particles {θ(1)
j }j=1,2,···,M with the law

P (θ|Y1) where the measure P (θ|Y1) is re-
constructed by using the resampling algo-
rithm.
• Get f̂ and ~̂g for t1 ≤ t < t2 with the initial

condition f̂(t1, x : θ(1)
j ) = E{f(t1, x)|Y1}

and ~̂g(t1 : θ(1)
j ) = E{~g(t1)|Y1} for all j.

• Repeat the above steps.
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Abstract. As natural gas is becoming increas-
ingly important in modern life, its transmission
and distribution through ever expanding pipeline
networks is dependent on efficient control and
management. However, the problem character-
istics, namely its large dimension, nonlinearity,
geographical dispersion, and transient properties
of the gas behaviour, make the design of efficient
algorithms for optimisation of gas networks cru-
cial.

Therefore, we see the optimisation of the gas
dynamics in the pipelines as a LQ Nash game,
where the different, and many times conflicting,
objectives to be taken into account in the optimi-
sation of the network can be modelled as players
of the LQ game. The dynamics in the network,
as well as the coupling conditions, are modelled
through a parabolic DAE system, which is formed
by the two Kirchhoff’s Laws and a space discre-
tised parabolic model which describes the gas
transients in the pipelines. Thence, complex net-
works, i.e., complex with loops and noncontrol-
lable elements, can be considered.

It is important to observe that the main
time-variation in the problem comes through the
constraints which represent offtakes’ demand.
Therefore, offtakes are viewed in this work as
disturbances to the system from a nominal usual
value. Other parts of the network, such as the
value of Linepack (i.e., the gas stored in the
pipelines) also change with time. Hence, we dis-
tinguish two different parts in the network: the
active part which is formed by the controllable
units, and the passive part composed by the con-
trollable units’ connections, i.e., the pipelines.

This framework can also set up a holistic
interactive approach that brings together differ-
ent network features—e.g. compressor stations,
sources, regulators, pipelines and valves—whose
optimisation objectives are different. A single
optimisation procedure becomes, thus, possible
without having to feed results from different soft-
ware packages into others. In addition, this math-
ematical model, where independent entities take
action, also offers the ideal modularity and sub-
sequent problem decomposition. A modular ap-
proach is also well-suited to the high, and ever
changing, dimension of the gas networks.

Besides the pipelines, the network also com-
prises offtakes, valves, reservoirs, compressor
stations, supplying sources, and regulators. With
the last three being controllable units, which
means that we will set some of its variables in or-
der to run the system in a desirable, or suitable,
manner.

The network is first decomposed into control-
lable elements and pipelegs, with the latter being
aggregated into subsystems which express vicin-
ity properties. Thus, in the game framework, the
players communicate trough network connectivity
constraints.

The network overall objective, i.e., to ensure
the delivery of the service at the customer off-
takes, is represented as disturbances. We do this
since the customers demand is usually variable,
which highly contributes for the unsteady nature
of flow in the pipelines. The pressure of the gas
delivered to the customers should be up to a con-
tracted minimum. This can be provided by vari-
able gas supply realised by compressor stations
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or the development of the network in order to in-
crease its flow capacity. The large extent of the
network makes that even small improvements in
the system might involve significant profits.

Conditions for the existence and uniqueness
of a solution for the game are related to the
solution of certain Riccati differential equations
and a bounary value problem. The approach
used is the construction of a value function which
leads to existence assertions in terms of solvabil-
ity of certain Riccati differential equations and a
boundary value problem. Furthermore, this ap-
proach directly provides a calculation procedure
for the equilibrium controls.

A simple network, where the players are two
controllable elements relevant to the network dy-
namics, is used to illustrate the calculation pro-
cedure.
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1. INTRODUCTION 

 
We present how to model real time 
authentication protocols with CafeOBJ algebraic 
specification language [1]. The protocols are 
specified as Timed Observational Transition 
Systems or TOTSs [2]. Based on this 
specification, we can verify desirable properties 
of the protocols through induction and/or case 
analysis, thanks to the CafeOBJ system and its 
support to the interactive theorem proving. The 
method we apply is a combination of [2] and 
[3]. As a case study we model TESLA protocol 
[4], which is used for the source authentication 
in multicast communication settings, and verify 
a safety property. The paper is organized as 
follows. Section 2 describes informally the 
TESLA protocol while section 3 presents how 
to model it with CafeOBJ.  Section 4 concludes 
the paper.   
 

2. THE TESLA PROTOCOL 
The Timed Efficient Stream Loss-tolerant 
Authentication (TESLA) broadcast 
authentication protocol is distinguished from 
other types of cryptographic protocols in both 
its key management scheme and its use of 
timing. Basic TESLA that is the simplest 
version of the protocol informally works as 
follows. An initial authentication is achieved 
using a public key signature. The subsequent 
messages are authenticated using Message 
Authentication Codes (MACs) linked back to 
the initial signature. In message n-1, the sender 
S generates a key kn , and transmits f(kn), where f 
is a suitable cryptographic hash function, to the 
receivers R, as a commitment to that key. In 
message n, S sends a data packet mn, 

authenticated using a MAC with key kn. The key 
itself is revealed in message n+1. Each receiver 
checks that the received kn corresponds to the 
commitment received in message n-1, verifies 
the MAC in message n, and then accepts the 
data packet mn as authentic. Message n also 
contains a commitment to the next key kn+1, 
authenticated by the MAC, thus allowing a 
chain of authentications [5]. The messages 
exchanged are as follows: 
 
Init Message: R → S: nR 
Reply Message S → R: {f(k1), nR}SK(S) 
Msg1: S → R: d1, f (k2), MAC(k1, d1, f(k2)) 
Msgn: S → R: dn,f(kn+1),kn-1,MAC(kn, dn, f(kn+1), 
kn-1 ) 
 
where nR is a nonce generated by the receiver to 
ensure freshness and d1, dn the data transmitted.  
The protocol requires an important time 
synchronization assumption, the security 
condition: the receiver will not accept message n 
if it arrives after the sender might have sent 
message n+1, otherwise an intruder can capture 
message n+1, and use the key kn from within it 
to fake a message n. Thus the agents’ clocks 
need to be loosely synchronized. 

 
3. MODELLING TESLA USING CAFEOBJ 

 
We have modeled TESLA as a Timed 
Observational Transition System in CafeOBJ. 
The specification consists of sorts (or types), 
operators on the sorts, and equations that define 
operators. The specification is executable. The 
visible sorts corresponding to the basic data 
types and the related operators are as follows: 
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- sort Agent denotes agents; constant enemy 
denotes the enemy, 
-  sort SKey denote the secret key used for the 
encryption of the initial packet, 
-  sort Key denotes the key used for MACs, 
-  sort Prf  denotes the pseudorandom function 
f; given a key k, f(k) returns the commitment for 
the key, while operator k returns the argument 
of f(k). 
- sort Nonce denotes nonces. Given agents p1, 
p2 and random number r, n(p1,p2,r) denotes a 
nonce generated by agent p1 to authenticate 
agent p2, where r makes the nonce globally 
unique and unguessable. 
-  sort Cipher denotes the ciphertexts encrypted 
with sender’s private key. 
- sorts Mac1, Mac2 denote the message 
authentication codes of messages m1 and mn 
correspondingly. 
The four operators to denote the four kinds of 
messages are im, rm, m1 and mn which are 
declared as: 
op im : Agent Agent Agent Nonce →  Msg 
op rm : Agent Agent Agent Cipher →  Msg 
op m1 : Agent Agent Agent Prf Mac1 →  Msg 
op mn : Agent Agent Agent  Prf Key Mac2 Nat →  Msg 
 
where Msg denotes messages. We mention the 
indexing of each message mn. The network is 
modeled as a multiset of messages, which is 
used as the storage that the intruder can use. The 
enemy tries to glean seven kinds of values from 
the network, which are Nonces, Ciphertexts, 
Pseudorandom function values, Message 
Authentication Codes of two kinds and Keys.  
The state space of the protocol is declared as the 
hidden sort Tesla. The specification consists of 
seven observations and twelve parameterized 
transitions. The four transitions formalize 
sending messages exactly following the protocol 
and the remaining the enemy’s faking messages. 
In addition there is a time advancing transition 
rule tick that advances the master clock. Each 
transition is executed between a lower and an 
upper bound. We assume that the sender sends 
messages at discrete time units, while an enemy 
can send messages whenever he wants.   
Based on the specification we have proved the 
following invariant property 
 
At any reachable state, if a key can be obtained 
by the enemy, then either the key belongs to the 
enemy or it has been revealed as part of a 
message. 
 
The above property is denoted by operator inv1. 
inv1(T, K) =   
K \in keys(nw(T)) implies  
(p(K) = enemy) or (s s i(K)) * d1 <= now(T) . 
 

where T denotes any reachable state of the 
protocol, K the key, i(K) is the index of the key, 
d1 is the time delay of sending action, s denotes 
the successor index, \in is the membership 
operator and now(T) denotes the current time. 
The proof is done by induction on the number of 
transitions applied. The methodology [2] 
includes case analysis and appropriate lemma 
discovery. 
We have used two additional lemmas to prove 
the above property. 
 

4. CONCLUSIONS 
 

We have formally specified and verified TESLA 
protocol using the TOTS/CafeOBJ method, to 
show its application to the modeling of real time 
authentication protocols. The protocol has also 
been modeled and verified in [5], [6], and [7]. 
CafeOBJ provides a flexible human computer 
interaction mechanism in good balance such that 
humans make proof plans and machines conduct 
tedious and detailed computations, and proof 
scores have flexible structure.  
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1. INTRODUCTION 

 

Let us consider the nonregular optimization 

problem 

  )(min x
nRx

ϕ
∈

 

subject to     (1) 

 mixg i ,1   ,0)( =≤  

where gradients *)(xg i∇ are linearly dependent 

at the solution point *x . Classical methods for 

solving such a type of optimization problems 

became non effective or are  not applicable 

since the Lagrange  multiplier 0λ  in the 

following equation 

 0*)(...*)(*)( 110 =′++′+′ xgxgx mmλλϕλ , 

may be equal zero at the solution point *x . 

 

 
2. THE P-REGULARITY THEORY AND 

NUMERICAL METHOD 

 

We propose to reduce inequality-constrained 

optimization problem to equality-constrained 

optimization problem of the following form: 

  )(min x
nRx

ϕ
∈

 

subject to     (2) 

 miyxg q

ii ,1   ,0)( 2 ==+  

where 1
2

+





=

p
q , and 2≥p . 

Obviously if *x  is a local minimum for the 

problem (1) then ( )**, yx  is local minimizer 

for (2) (see e.g.[2]). We would like to show 

how to apply so called the p-regularity 

theory for solving the problem (2). This 

theory introduced earlier in [3,4] is applied 

in different branches of mathematics.  

Main idea of the our method is to replace 

the necessary optimality conditions by new 

onces obtained earlier for p-regular 

problems. Combining these with some 

nondegenerate modification of constraints 

)(xF , we obtain a regular system of 

equations. This new system reduces to the 

system of classical necessary optimality 

conditions in regular case, but it is a basis 

for constrained optimization algorithms in 

degenerate case, it means for constructing 

new method (p-factor Lagrang`e method). 

Iterative sequences constructed for solving 

the system converge to the solution of the 

original nonlinear optimization problem 

with quadratic rate.  
 

3. CONCLUSIONS 

 

We present methods for solving degenerate 

nonlinear optimization problems with inequality 

constraints. The results are based on the 

constructions of p-regularity theory and on 

reformulating the inequality constraints as 

equalities. Namely, by introducing the slack 

variables we get the equality constrained 
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problem, where gradients are linearly 

dependent. The Jacobian matrix of the 

constraints is assumed to be singular at the 

solution point. 

In considered method we construct non singular 

matrix. If matrix is nondegenerate at the 

solution point *)*,( yx  we can use the p-factor 

Lagrange method to solve the problem (1). We 

prove that the constructed iterative process 

converges to the solution of the original 

nonlinear optimization problem with quadratic  

rate of convergence. 
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            1.INTRODUCTION 

The most met formulation of 0-1 problem is 

                  ∑
=

n

j

jj xc
1

max                               (1) 

subject to 

             midxa i

Nj

jij

i

,1=≤∑
∈

                  (2) 

  { } { } NNnNjx ij ⊂=∈∈ ,,...,2,1,1,0    (3) 

For 1=m  and positive jiij cda ,,  the problem 

becomes the knapsack one which is effectively 

applied in knapsack-type public key 

cryptosystem (Koblitz (1994)). 

For 2=m  and positive iijj dac ,,  we obtain 

two-constraint 0-1 knapsack problem. An exact 

method for solving this problem is given in 

(Martello and Toth(2003)). 

In general 0-1 optimization problem belongs to 

hardNP −  class but there are many particular 

cases solvable  in polynomial time. 

Such cases are discussed for example in 

(Jenner B. (1995)), (Alfonsin R. (1998)). 

We want to refer to these cases. It turns out 

that we can extend the set of 0-1 optimization 

problems solvable in polynomial time. It is 

possible when the coefficients of the objective 

function belongs to the set of superincreasing 

or superdecreasing type of sequence. 

     2. SUPERINCREASING SEQUENCE      

    AND 0-1 OPTIMIZATION  PROBLEM 

Definition 1. 

A sequence )( jc  is called superincreasing 

when   ...3,2

1

1

=<∑
−

=

jforcc

j

i

ji           (4) 

We will consider sequences containing only n  

elements and assume that for 1=n  a 

sequence is superincreasing. 

 

Proposition 1. 

If the problem (1)-(3-) satisfies the following 

assumptions: 

- a sequence )( jc  is the superincreasing and   

   non negative one, 

- elements 0≥ija  

the optimal solution of the problem (1)-(3) is 

given by the procedure 















−=

−≤

=

∑
+∈

otherwise

nnj

adawhen

x

jNk

kj

j

0

1,...,1,

1

*
         (5) 

where 

ja -the j-th column of the constraint matrix (2) 

{ }{ }11,...,1,,1:

,),...,,(

*

21

+=−∈==

Φ==
+

+

jnnkxkN

Ndddd

kj

n
T

m

The complexity of the procedure (5) is 

polynomial - )( 3nO . 

   3. UPPER-BOUND AND LOWER-BOUND    

       OF OPTIMAL     

       OBJECTIVE FUNCTION VALUE 

Denote by 

−nH the set of possible, integer and     

          superincreasing sequences nihi ,1),( =  

−nA the set of  superincreasing sequences  

           with integer elements not smaller than   

           suitable elements of sequence )( jc , 

{ }njchHhA jj
nn ,1: =≥∈=  

Let )( jc be not decreasing. 
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Definition 2. 

A superincreasing sequence )( *
jh is called the 

nearest up to the sequence )( jc when 

nAh ∈*
 

∑
=∈

∈

−=

=−=−

n

j

jj
Ah

Ah

hc

hchc

n

n

1

*

min

min

                   (6) 

The complexity of  setting the sequence 

)( *
jh is polynomial - )( 2nO . 

Upper-bound of optimal objective function 

value is given by 

                 ∑∑
==

≥
n

j

jjj

n

j

j xcxh

1

*

1

*
                (7) 

for 0,0 ≥≥
j
caij  

and 1=jx  only then if it follows from the 

procedure (5) and  when we replace the 

sequence )( jc  by sequence )( *
jh . 

Similarly we can define a superincreasing 

sequence )( o
jh , which is called the nearest 

down to the sequence )( jc . Using  )( o
jh , the 

lower-bound of optimal objective function 

value is given by formula ∑
=

n

j

j
o
j xh

1

when 

{ }holdconstrExSx n )3(),2(.:∈=∈ . 

4. MINIMALIZATION PROBLEM 

We consider the following 0-1 problem: 

                    ∑
=

n

j

jj xc

1

min                       (8) 

subject to 

midxa

iNj

ijij ,1=≥∑
∈

                 (9) 

{ }1,0∈jx ,    NNnNj i ⊂=∈ ,,1    (10) 

This problem needs another approach. 

Definition 3. 

A sequence )( jc is called superdecreasing 

one when 

1,...,1

1

−=> ∑
+=

njcc

n

ji

ij                 (11) 

Proposition 2. 

If the problem (8)-(10) satisfies: )( jc   

superdecreasing sequence, 0,0 ≥≥ ijj ac , 

there exists  j  such that mida iij ,1, =≥  

then optimal solution of problem (8)-(10) 

can be expressed in following way 

*
** 01

*
jjforxandx jj ≠==  

when 

 there exists i such that 

{ }∑
+=

∈<
n

jj

iij mida

1*

...,2,1, and nj <*  

where  { }midajj iij ,1,:max* =≥=  

or nj =* . 

The complexity of computing optimal 

solution according to procedure given 

bellow is polynomial- )( 2nO . 

We have also considered several other 

cases (Chudy M.(2005)). 

5. CONCLUSIONS 

Superincreasing and superdecreasig 

sequences can be widely used to find  

effectively an upper- or lower- bound of 

optimal objective function value. 
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1. INTRODUCTION

The importance of the NP-hard weighted 
maximum leaf spanning tree problem 
(WMLSTP) derives form its direct applications 
in the design of computer and communication 
networks, VLSI circuit, as well as from its 
appearance in theoretical investigations 
connected with some graph properties [2]. 
Given an undirected and connected graph G = 
(V, E(G)) where V = {1, 2, …, n} is a non-
empty set of vertices, E is a set of edges and a 
non-negative function w: V +. For  i  V, let  
G(i)  denote a set of edges adjacent to i  in 
graph G. For a spanning tree T = (V, E(T)), E(T) 
 E(G), in G, the vertex  i  V  with T(i)= 1 
is called a leaf and the set of all tree  T  leafs is 
denoted  L(T) = { i  V : T(i)= 1}, where 
T(i) is a set of edges adjacent to i in tree T , 
T(i)  G(i). The WMLSTP is to find a 
spanning tree  T  in G, which maximizes the 
sum of leafs weight 

( )
i

i L T
w


 . This problem is 

a generalization of the maximum leaf spanning 
tree problem (MLSTP) where the problem is to 
find a spanning tree  T  in G, which maximizes 
the number of the leafs L(T)  max. The 
difference between problem WMLSTP and 
MLSTP is displayed in figure 1, where tree c) in 
weighted graph a) has the weight 8 whereas tree 
b) has greater number of leafs and the weight 
equals 0.

2. GTS ALGORITHM

For WMLSTP problem solution we propose a 
modified genetic local search algorithm called 
GTS where each spanning tree, individual of the 


population, generated by crossover procedure is
improved by designed for WMLSTP 
randomized tabu search (RTS) instead of hill 
climbing algorithm. The population of GTS 
consists only of feasible solutions that is of 
spanning trees thus crossover and RTS 
algorithms have to generate only feasible 
descendents. Figure 2 presents the process of 
feasible descendent  T3 generation on the base of 
two parents T1 and T2 crossover where T1T2  
stands for the joint genetic material (set-
theoretic sum of tree edges) of parents.  

3. COMPUTATIONAL RESULTS

For the purpose of GTS algorithm quality 
verification we make some series of computer 
experiment for problem WMLSTP instances 
where number of graph G vertices are n = 25, 
50, 75, …, 250. For each  n  50 test graphs (20 
grid, 10 cubic, 20 with random connections in 
graphs) were generated  randomly; for each test 
10 optimizations were performed. Fig. 3 
displays mean values of all series of computer 
experiments where one series consist of 
10*50*10 = 5000 optimization processes. The 
first column of the Fig. 3 diagrams present the 
percentage improvement of the objective 
function realized by investigated SA (simulated 
annealing algorithm [1] taken for the 
comparison) and GTS algorithms in proportion 
to best spanning tree in the randomly generated 
initial population and the second column in 
proportion to the best spanning tree determined 
by 90 constructive heuristics. Besides, the third 
column presents the improvement index of the 
SA and GTS algorithms. 
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 Fig. 1. Differences among WMLSTP and MLSTP problems.

Fig. 2. Example of the crossover process. 

Fig. 3. Computational results.
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1. PRELIMINARIES

This paper presents a parallel iterative algorithm
for solving the bound constrained optimization
problem (BCOP)

min
x∈F

f(x), F = {x ∈ IRn : s ≤ x ≤ t},

where the vector inequalities s ≤ x ≤ t hold
component wise, i.e., sk ≤ xk ≤ tk, k =
1, . . . , n and f(·) : F → IR is a real valued
function of n variables with inaccurate or absent
derivative information. Starting with x0 ∈ F ,
the algorithm generates a sequence {xi}∞1 ⊆ F
that, under suitable assumptions, possesses a sub-
sequence {xi}i∈I converging to a point x∗ ∈ F
satisfying a necessary condition for optimality
linked to the differentiability properties of f(·).
A salient feature of our parallel algorithm is that
it exhibits a fault tolerance fixed by the user, say
π; i.e., the algorithm still works even if π proces-
sors are idle or faulty at the same time.

The parallel algorithm is a natural outgrowth
of previous sequential algorithms for uncon-
strained optimization problems, which assume
that a numerical approximation of derivatives is
unreliable. The forerunner derivative free algo-
rithm was introduced by Garcı́a and Rodrı́guez
(1). Later Garcı́a et al (2) suggested the non
monotone version to deal with global optimiza-
tion. A key concept needed for the convergence
analysis of these algorithms is the generation of
a set of r unit directions Di = {dik ∈ IRn, k =
1, . . . , r} that positively spans IRn; that is, any
x ∈ IRn can be represented as a non negative lin-
ear combination of elements in Di. For solving
(BCOP) the set Di = {±e1, . . . ,±en} of unit
vectors along the axis positively spans IRn and
has been suggested in previous works (1; 2; 3).

Numerical experiments with unconstrained prob-
lems reveal that this choice in general deteriorates
the algorithm’s performance. Therefore, this pa-
per suggests a new scheme to form Di that takes
into account the geometry of the constrained re-
gion, which seems to be necessary to prove con-
vergence (4).

2. ALGORITHM

Due to space limitations this section describes a
simplified implementation of the algorithm (ta-
ble 1) and outlines the convergence proof. Com-
plete details will be given in the full length ver-
sion of this paper. There are, say p processors,
with a common memory accessible by them all,
where the best estimate z, f(z) is saved. The j-th
processor fetches this information around every
Γj seconds. Besides, the j-th processor has the
following handy information at the i-th iteration:

Ki = {k : sk + δ ≤ xk
i ≤ tk − δ}, δ > 0

Pj ⊆ {1, . . . , n} variables pertaining to j

τij > 0, radius of search
γij ≥ 1, expansion factor
µij < 1, contraction factor
xij ∈ F , solution estimate
ϕij ≥ f(xij), upper bound of f(x)

Pj is an index set of those components of x

that can be modified by processor j. In fact,
starting at any xij the j-th processor attempts to
solve the BCOP on the subspace generated by the
unit vectors ek, k ∈ Pj ; i.e. it tries to solve

min
x∈ C

f(x), C = {x ∈ F : xk = xk
ij , k 6∈ Pj}.

The algorithm ensures convergence to x∗ ∈ F

if
p⋃

j=1
Pj = {1, . . . , n}. When Pj = {1, . . . , n}

for j = 1, . . . , p, the algorithm simply uses each
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Dij spans positively the subspace spanned by
ek, k ∈ (Pj ∩Ki).
Dij = Dij ∪ {±ek : k ∈ (Pj ∩ ¬Ki)}.
success = false
for d ∈ Dij

y = median(s, xij + τijd, t)
if f(y) ≤ ϕij − 0.01(τij)2

xi+1,j = y; τi+1,j = min(τ, γτij)
success= true; break

if success= false
xi+1,j = xij ; τi+1,j = µτij

Update ϕi+1,j

if time Γj to retrieve z is surpassed
if f(xi+1,j) < f(z)

z = xi+1,j

elseif f(z) ≤ ϕi+1,j − 0.01(τi+1,j)2
xi+1,j = z
τi+1,j = min(τ, γτij); ϕi+1,j = f(z)

Table 1. i-th iteration, j-th processor

processor for solving BCOP. Although highly in-
efficient, let us point out that we have a fault
tolerance π = p − 1. We could distribute the
components 1, . . . , n in such a way that any q

processors randomly taken may modify all com-
ponents; in which case π = p− q.

We say that xij is blocked by τij if

[d ∈ Dij ] ⇒ f(y) > ϕij − 0.01(τij)2,

where y = median(s, xij + τijd, t). We observe
that the upper bound ϕij influences the perfor-
mance of the algorithm significantly. Large val-
ues allow to succeed (success= true in table 1)
more often and ease the hill climbing ability of
the algorithm; on the other hand, the closer the
value of ϕij is to f(xij) the more similar the
behaviour of the algorithm is to its monotone
version and it might converge to the closest local
minimum.
Convergence theorem. We need the following
assumptions:

A1: f(·) is bounded below on F , and {xi}∞1
remains in a compact set.

A2: f(xij) ≤ ϕij ;ϕi+1,j ≤ ϕij .
Let I ⊆ {1, . . . , } and let i, k be two subse-

quent elements in I; then ϕkj ≤ ϕij − 0.01τ2
kj .

A3: Di → D, and D spans positively IRn.
Let x∗ be a limit point of blocked points and

let B(x∗, ρ) be a ball around it. If f(·) is convex
in B with smooth directional derivatives f ′(x, d),

then f ′(x∗, d) ≥ 0 for all feasible directions d ∈
D. Moreover, if f(·) is strictly differentiable at
x∗, then∇f(x∗)T d ≥ 0 for all feasible directions
d ∈ D.

Remark. If K∗ = {k : sk + δ ≤ xk
∗ ≤

tk − δ} = {1, . . . , n}, the algorithm solves an
unconstrained optimization problem and the the-
ory developed in (1; 2) is valid. The proof of
convergence is based on this fact, but it is rather
lengthy and technical. It is omitted in this ex-
tended abstract.

3. CONCLUSIONS

We have sketched an algorithm for solving the
Box Constraint Optimization Problem, which
shares many important properties of its coun-
terparts in unconstrained optimization; mainly
i: It can deal with noisy functions, ii: Con-
vergence for smooth convex functions, and for
strictly differentiable functions is ensured under
rather weak conditions, iii: It is non monotone,
and may scape from local minima; and finally,
iv: practical versions can be easily implemented
in a multiprogramming environment with a fault
tolerance fixed by the user.
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A scheduling method has 

been developed for multi-task 

R&D projects in which technical 

and market risk factors are 

critical issues. The R&D risk is 

controlled by stage-wise 

investment decisions and the use 

of real options of stage-wise 

development type.

The project scheduling 

method employs the expected 

sum of total investment as a risk 

index, and minimizes the index 

through task ordering and task 

scheduling steps subjective to 

constraints.

Expected loss of a project 

with 3 tasks  is evaluated for 

schedule A and B in Fig.1. 

Schedule B with shorter project 

term has increased expected 

loss, because test3 starts even if test 2 fails. 

Expected loss is linearly correlated to 

expected investment, which is the risk index, 

in multi-task projects. 

A risk directed ordering measure (task 

investment/ task failure probability) is 

analytically derived from the minimum 

expected loss criteria, and extended to satisfy 

task order constraints for Step 1. The total 

expected investment V for a project with n 

serial tasks is given as: 

V=H1+P1H2+---+P1P2---Pn-1Hn

,where Hk and Pk are investment (cost) and 

success probability of k-th task, respectively. 

The optimal ordering condition assures that 

no task pair exchange reduces the expected 

investment, and is described as follows: 

Hk+1/(1-Pk+1) > Hk/(1-Pk)

The ordered tasks are scheduled by the 

dynamic programming for resource 

allocation at Step 2 as illustrated in Fig.2.  

The project scheduling method has been 

successfully applied to a sample 

pharmaceutical R&D project with 28 tasks as 

in Fig.3, and the applicability of the method 

has been confirmed with numerical results 

from the two scheduling steps. 

Numerical results reveal some 

characteristics of the minimum risk schedule 

of the multi-task project: 

(a) Schedule A : Test 2 & 3 start immediately 

after the preceding test.

Expected Loss LA = H1(1-P1)+(H1+H2)P1(1-P2)+(H1+H2+H3)P1P2(1-P3)

(b) Schedule B : Test3 starts before Test2 ends. 
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- Flattened resource is obtained throughout 

the project term in the expected resource 

profile, though remarkable peak is found at 

later stage of the project in the success-based 

resource profile. 

- Delayed start of tasks at earlier stage of the 

project contribute to improve the risk index, 

because those tasks tend to have critical 

impact on the expected investment. 

Fig.2  Schedule optimization scheme for Step 2

(a) The possible schedules are defined  for each task ordered 

at Step 1 on the basis of the decision tree describing the

binary choice of task  initiation month.

(b) The optimal path with the minimum  expected loss is 

searched  in the decision tree subjective to constraints on 

resource and time.
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1. INTRODUCTION 

 
In the paper a problem of determining 
movement schedule of many objects is 
considered. The problem is used in many 
domains such as: routing in computer networks, 
movement planning of mobile robots, tasks 
processing in parallel or distributed computing 
systems, arms control of independent robots, 
planning and synchronization of many objects 
movement in computer simulation games, e.g. 
in Computer Generated Forces (CGF) systems 
(Petty, 1995). A special type of movement is 
such one that objects must be moved 
simultaneously. And a special type of system 
with this requirement is system for movement 
planning and simulation of military objects 
(units) in combat simulators. Movement 
scheduling has an influence on accuracy, 
adequateness, effectiveness and other 
characteristics of these systems. Then, the 
problem is to model and optimize such 
movement of detachments to achieve intended 
goals of commands (such as: achievement of 
destinations on restricted time, avoiding of 
losses during redeployment etc.). Regardless of 
kind of military actions military objects are 
moved according to some group pattern. For 
example, each object being moved in group (e.g. 
during attack, during redeployment) must keep 
distances between each other inside group.  
Therefore, the paper presents some problems of 
movement scheduling for many objects to 
synchronize their movement. 
 

2. DEFINITIONS AND NOTATIONS 
 

We assume that we have Berge’s graph G 
defining structure of the terrain (divided on the 
squares, hexagons, etc.) ,G GG V A= , V= |VG|,  

VG – set of graph’s nodes (as centre of terrain 
squares), AG – set of graph arcs, AG⊂ VG × VG,  
A=|AG|. We assume that on each arc we have 
defined value , 'n nd  of function d which describes 
terrain distance between the graph nodes n and 
n’. We have K objects (columns, trucks, tasks) 
for movement from the vector s=(s1, s2,…,sK) of 
source nodes to the vector t=(t1, t2,…,tK) of 
destination nodes of G. For further discussion 
we accept following notations: 

( )0( , )  =  ( ) ,...,  ( ),... , ( )kRr
k k k k k kI s t = I i k s i k i k t= =

( )0 1( ) ( ), ( ),..., ( ),..., ( ) ( )kRr
k k k kT I T k k k k Iτ τ τ τ τ= = =  

( )0 1 1 2 1( ), ( ) ( ), ( ) ( ), ( )
( ) , ,  . . . ,  R Rk kk k k i k i k i k i k i k i k

V I V v v v −= =

where Ik - vector of nodes describing path for the 
k-th object, ( )1

{1,..., }
( ), ( )

k

m m
Gm R

i k i k A−

∈
∀ ∈ ; ( )ri k  - the r-

th node on the path for the k-th object; sk, tk – 
source and destination nodes for the k-th object; 
Tk - vector of time instances of achieving the 
nodes belonging to the path for the k-th  object; 

( )r kτ  - time instance of achieving node ( )ri k  by 
the head of the k-th object, 

1

1, 0, 1
 ( ) ( ) 0r r

k K r Rk
k kτ τ+

= = −
∀ ∀ ≥ ≥  and 0

1,
 ( ) 0

k K
kτ

=
∀ = ; 

( )kIτ  - time of achieving destination node by the 
k-th object; Vk - vector of velocities 1( ), ( )r ri k i k

v +  of 

the k-th object on the arc ( )1( ), ( )r ri k i k+  of its 
path; Rk  - number of arcs belonging to the path 
of the k-th object.  
Let { }1 2( ),  ( ),...,  ( ),...,  ( )

kk p PIP i k i k i k i k= denotes set 

of nodes at which we must align the head of the 
k-th object in relation to the heads of other 
objects, where ( )pi k  - the p-th element of IPk 
satisfying: 

1, {1,..., }
( ) ( )

p Pk k

r
pr R

i k i k
= ∈
∀ ∃ =  and 

( ) {1,..., } ( ) ( )r
p k pr k r R i k i k= ∈ ⇔ = . The form of IPk 
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and ( )pr k  say that path for the k-th object must 
cross by nodes belonging to IPk. Let, by analogy 

{ }1 2( ),  ( ),...,  ( ),...,  ( )
kk p PTP k k k kτ τ τ τ=  denotes set 

of time instances of achievement particular 
alignment nodes from the set IPk by the k-th 
object head, ( )p kτ  denotes moment of achieving 
the p-th alignment node by the k-th object, 

 

1

1

( ), ( )0

{0,..., 1} ( ), ( )    ( )

( ) ( )  
r r

r rk
p

i k i k
p

r R i k i kr r k

d
k k

v
τ τ

+

+∈ −
≤

= + ∑
 

We make additionally assumption that P1=P2 
=…=PK =N,  i.e. for all objects the same 
number of alignment points (nodes) exist. 
Moreover, we define for each p=1,..,N  
following characteristic: max

{1,..., }
max ( )p pk K

kτ τ
∈

= . 

 
3. FORMULATION OF THE PROBLEM 

 
We define the problem of synchronous 
movement of K objects as follows: for 
each  {1,..., }k K∈  to determine the path Ik 
crossing by points from kIP  and for each arc 

( )1( ), ( )r ri k i k+ ,  {0,..., 1}kr R∈ −  belonging to 

the path Ik to determine such a velocity 
1

max
( ), ( )

0 ( )r ri k i k
v v k+< ≤ , that some goals (one or 

more) are satisfied, where max ( )v k  describes 
maximal velocity of the k-th object resulting 
from its technical properties.  
The most important goals for movement 
synchronization can be divided into two 
categories. The first category is time of 
movement of K objects. We can define two 
basic measures of this category: 

 max

{1,..., }
max ( )kR

k K
kτ τ

∈
=    ,        

1
( )k

K
R

k
kτ

=
∑  

The second category is “distance” between 
times of achieving alignment points by all of K 
objects. We can define two main measures of 

this category: max

1 1

( )
N K

p p
p k

kτ τ
= =

−∑∑ ,        

( )max

{1,..., } {1,..., }
min max ( )p pp N k K

kτ τ
∈ ∈

− . 

One of the formulations of optimization 
problem for movement synchronization of K 
objects using defined two categories of 
measures  can be presented as follows: for fixed 
paths Ik of each k-th object to determine such 

1( ), ( )
,  0, 1,   1,r r ki k i k

v r R k K+ = − =  that 

 
max

1 1

( ) min
N K

p p
p k

kτ τ
= =

− →∑∑
 

with the constraints : 
 1

max
( ), ( )

( ),         0, 1,   1,r r ki k i k
v v k r R k K+ ≤ = − =   

 1( ), ( )
0,                  0, 1,   1,r r ki k i k

v r R k K+ > = − =  

Paths for K objects may be disjoint or not and 
they must cross by fixed alignment points or we 
dynamically determine these points. 
 

4. CONCLUSIONS 
 

In the final version of the paper a nonlinear 
movement scheduling problem in order to 
minimize sum of delays of all (K) objects in 
checkpoints with some additional constraints 
will be defined. Two equivalent formulation of 
two-criteria mathematical programming 
problems taking into account two categories of 
the goals will be also presented. It will be 
proved that constraint coefficient matrices for 
both problems are totally unimodular and we 
can use effective algorithms for solving linear 
programming problems to find lexicographic 
solution of two-criteria problems. Two 
algorithms for synchronous movement 
scheduling will be proposed and their properties 
will be shown. Similarities and differences 
between defined problems and classical tasks 
scheduling problem before critical lines on 
parallel processors will be discussed. Some 
extensions of movement scheduling problem 
will be presented, too. 
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1. INTRODUCTION

The problem we consider concerns the opti-
mal tariff offered to a customer of a mobile
telecommunication company. The company
proposes the best possible combination of
services within several contracts to an individual
customer, or a corporation. The considered
services are such as: domestic and foreign calls,
local and long distance calls, SMS and MMS
messages, etc. In general the number of these
services can be quite significant especially when
corporate client is considered. Some of these
services can be packed into packages which
we call contracts which require fixed monthly
payments if the specified number of services
included in them are not exceeded. If a customer
uses more services than those specified in the
contract he is charged for each exceeding service.

The tariff optimization problem is then de-
fined as a problem of finding the best possible
choice of contracts such that the monthly pay-
ment of a client is the lowest provided that the
customer’s profile is known. By the customer’s
profile we mean his average use of services dur-
ing some pre–specified period of time. Once the
mobile telecommunication company decides to
propose to its customers optimal tariffs it must
take into account an avalanche of questions from
its customers concerning its new proposition. It
translates into a bulk of optimization problems
which have to be solved in short time in order
not to discourage the customers from this propo-
sition.

2. THE PROBLEM FORMULA-
TION

Let us denote by yi the number of contracts of
ith type and by xij the number of jth services
within the ith type of contract. Then the tar-
iff optimization problem–P–is as follows (more
general formulations with the option for substi-
tute services are possible)

min
x,y

m∑
i=1

ciyi +
n∑

j=1

cij max [0, xij − yibij ]



s. t.
m∑

i=1

xij = xh
j , j = 1, . . . , n (1)

0 ≤ yi ≤ Mi, i = 1, . . . ,m (2)

0 ≤ xij , i = 1, . . . ,m, j = 1, . . . , n. (3)

Here, x = {xij}i=1,...,m,j=1,...,n, y =
{yi}i=1,...,m, ci is the monthly cost of the ith
contract, cij is the unit cost of the jth service
in the ith contract and bij is the limit of the jth
service in the ith contract which is included in
the contract as free of charge. Furthermore, xh

j

denotes the average number of units of the jth
service measured in the pre–specified period of
time. In order to complete the description of the
problem we have to indicate that variables y are
integer variables, furthermore we assume that x

are real numbers. Problem P can be stated as a
standard linear MIP problem by introducing aux-
iliary variables zij which transform the problem
to the problem with a differentiable cost function
((3)):

min
x,y

m∑
i=1

ciyi +
n∑

j=1

cijzij

 (4)
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s. t. xij − yibij − zij ≤ 0 (5)

0 ≤ zij , i = 1, . . . ,m, j = 1, . . . , n (6)

and constraints (1)–(3).

3. DECOMPOSITION METHOD
FOR MIP PROBLEM

Problem (4)–(6), (1)–(3) can be solved by various
algorithms (some exemplary results are presented
in the next section), however for problems with
large m and n the performance of these methods
couldn’t allow to use them in on–line computa-
tions (an offer for a corporate client can refer to
as many 20 different contracts which can have
200 different services). In order to circumvent
the dimensionality problem we advocate to use
the relaxation methods based on the Lagrangian
of the problem. Since only constraints (1) un-
able us to solve the problem in the decomposed
way–each subproblem corresponds to each con-
tract i–we introduce the Lagrange function with
respect to these constraints:

L(x, y, λ) =
m∑

i=1

ciyi +
n∑

j=1

cijzij


+

n∑
j=1

λj

[
m∑

i=1

xij − xh
j

]
, (7)

where λj are the Lagrange multipliers corre-
sponding to (1).
The problem can then be solved by using two–
stage algorithm where at the lower level subprob-
lems Pi, i = 1, . . . ,m are solved:

min
yi,xij ,zij ,j=1,...,n

yici +
n∑

j=1

cijzij +
n∑

j=1

λjxij


s. t. 0 ≤ yi ≤ Mi

0 ≤ xij , j = 1, . . . , n.

xij − yibij − zij ≤ 0

0 ≤ zij , j = 1, . . . , n

assuming that λj , j = 1, . . . , n from the upper
level of the algorithm are given.
At the upper level of the algorithm variables λj ,
j = 1, . . . , n are updated in order to maximize
the function

L̄(λ) = L(x(λ), y(λ), λ), (8)

Problem B & B B & C (G) B & C (P) B & C (G + P)

small 0.08 s. 0.047 s. 0.062 s. 0.084 s.
2 nodes 1 node 1 node 1 node

medium 1.74 s. 0.87 s. 0.61 s. 0.84 s.
84 nodes 28 nodes 32 nodes 8 nodes

Table 1. Numerical results

where x(λ) and y(λ) are solutions to the prob-
lems Pi.
Since the upper level of the optimization algo-
rithm is nondifferentiable problem subgradient
methods such as those described in (2) should
be used to solve it.

4. CONCLUSIONS

The paper presents a practical problem of de-
termining an optimal tariff for a customer of a
mobile telecommunications company. The for-
mulated problem can be solved on–line as results
presented below show.
Suppose that the number of possible contracts
and services are equal to m = 6 and n = 14
respectively–then we have small tariff problem.
In the second problem we have m = 13 and
n = 80–we call it a medium size problem. In
order to solve these problems we applied CBC
(COIN-OR Branch and Cut) framework for solv-
ing MIP problems (see (1) and (4)). Some nu-
merical results are given in Tab. 1–(G) means
Gomory, (P) means Probing and (G+P) Gomory
and Probing. The table reports CPU time ob-
tained on Intel PC with 1.86MHZ processor with
1GB of main memory.
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1. PRELIMINARIES 

 
In this paper we will present an approach to 
solving the problem of choice of an optimal re-
servoir control strategy in the situation of flood 
emergency. The potential and often adopted 
actions include spontaneous releases of water 
from the reservoir based on the emergency pre-
cipitation forecasts. As side effects, the water 
level sinks below the minimum necessary to 
sustain the ecosystems in reservoir lakes, while 
the fluvial ecosystems below the reservoir are 
often destroyed. We show that these effects may 
be minimised by a suitable coordination: the 
problem to be solved is a multicriteria coordina-
tion one, with the environmental, financial and 
human-life-protection-related criteria. 

We assume that in the region, which is endange-
red by the flood, there exist n water reservoirs, 
which can be used for the flood-control. The re-
servoirs are divided into N subsystems , each of 
them having a separate direction, economical 
goals, individual instructions on how to act in 
case of flood emergency, and a specified region, 
which should be protected in the first order of 
importance. The latter information can be regar-
ded as components of the i-th subsystem prefe-
rence structure, for i=1,…,N. Motivated by the 
situation in the Upper Vistula Basin, which ser-
ved as a playground for an implementation and 
experiments, we consider the case where all 
reservoirs are located on the feeders, while the 
flood wave on the recipient between and be-
neath the mouths of the feeders is controlled by 

the coordinated release of water from reservoirs 
belonging to different subsystems. Such situa-
tion may occur when larger cities and industria-
lised areas are situated in the main river valley.  

This paper bases on an earlier research on 
modelling and control of water flows in river 
systems and reservoirs. Based on the above we 
will formulate a new problem concerning 
• modelling the preferences of single reservoir 

management responsible for local flood-
control activities; and 

• coordination of their activities by construc-
ting a common preference structure to be ap-
plied by a supervisory control centre. 

In the model here presented the water reservoirs 
and river beds are modelled by the system of 
controlled ordinary differential equations: 

x’= f(x,u,t,η), x∈IRn, t∈[t 0, T], u∈IRk, η∈IRn    (1) 

The above eqs. (1) results from a discretisation 
of the system of Saint-Venant equations. The 
latter describe the water flows more accurately, 
but require the real-time data on the flows and 
other hardly accessible information, such as 
exact description of river bed profiles, which 
change usually in the high water flow 
circumstances, therefore are not suitable for 
real-time control. The state variables xj in the 

discretised models may be identified with the 
volumes of real, or hypothetical reservoirs (i.e. 
those resulting from a partitioning of river beds 
when discretising the Saint-Venant eqs.), while 
the controls ui are interpreted as the velocity of 
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the water issue from the controlled reservoirs. 
The precipitation forecasts η may be input into 
the model as expected values or as deterministic 
scenarios, and should be updated at each step of 
the control strategy choice procedure. Other 
weather forecasts can be included into the 
problem analysis at the water inflow modelling 
stage. The described model makes possible 
efficient computation and proved useful in real-
time control systems, when the dimension of the 
system (1) was between 37 and 140.  

 
2. OPTIMISATION PROBLEM STATEMENT 
 
Management staff of reservoirs is responsible 
for the flood protection in the recipient' s valley 
as well as in their own protection regions. For 
measuring the overall performance of each sub-
system we have introduced the aggregated 
trajectory objectives Ji(u,t) quantifying the value 
of the flood losses in the whole i-th subsystem 
protection region from the beginning of the 
observation period t0 to t. We assume that they 
may be expressed in the form: 

( ) ( )
[ ]

,,,...,:,
, )(1)(1)()( tdtxxxgtuJ
tt iikikikii

o
∫ ++=     (2) 

for i=1,…N,  to ≤ t ≤ T, where to and T denote 

the moments of foreseen beginning and termina-
tion of the flood emergency situation, respecti-
vely, x xk i k i i( ) ( ) ( ),... +1  are the state-space coordi-

nates of the i-th subsystem, and gi, i=1,..n, are 

piecewise differentiable functions describing the 
dependence of the flood losses on the state of 
reservoirs. The criteria Ji describe the losses in 

ecological, financial, and human life emergency 
terms and cannot be easily aggregated. Obvious-
ly, they are to be the minimised simultaneously.  

First, let us assume that the functions Ji conform 
to the local preference structures in each 
subsystem. Thus the goal of the supervisory 
control centre is to coordinate the subsystems’ 
actions in order to assure the sustainability of 
ecosystems, and - when the flood danger 
becomes salient – to protect highly populated 
areas in the recipient’s valley. Let us observe 
that the above criteria Ji are conflicting, i.e. the 
strategy minimizing the losses in the i-th region 
may not be optimal for the j-th subsystem, for 
j≠I and the ecological, economical and 
emergency criteria for each single reservoir are 
conflicting as well. The experiments point out 
that the coordinating centre is both capable and 
willing to keep the losses – in unavoidable – 
combined with the costs of anti-flood operations 
in certain limits, uniformly bounded for all 
reservoirs. At the same time the function JN+1, 

which describes the losses in the recipients 
valley is to be minimised as an additional 
criterion. The role of the coordinating superior 
decision centre will thus consist in ensuring that 
the values of the criteria are nondominated and 
belong to the specified reference set Q(t), i.e. 

( ) )(),(),...,,(1 tQtuJtuJ N ∈                (3) 

The values of the multifunction Q(t) may be 
regarded as the sets of safe, or desired values of 
the criteria. Since the moment of termination of 
the flood danger is uncertain, and the indirect 
values of the losses play also an important role, 
we assume that the relation (3) shall be fulfilled 
on certain subinterval [t1,T] of the control 

period (t1>t0), whereas t1 may be meant as the 
beginning of anti-flood activities according to 
emergency rules. The optimisation task thus 
posed is a multicriteria optimal control problem 
with output trajectory objectives. We provide 
methods of finding a nondominated trajectory of 
the system fulfilling the additional demands (3). 
For the case, where the values of Q cannot be 
achieved for all t∈[t1,T], we propose a collec-

tion of methods to regularise the problem based 
on the distance scalarisation techniques. 

There are diverse environmental, social, econo-
mical, and benefits of applying the coordination 
of control actions in case of a flood, or prece-
ding an expected flood. The most important, yet 
not quantifiable indicator, is the number of hu-
man lives that can be saved if the flood wave is 
kept within safe limits or at least it grows in an 
observable and predictable manner. The envi-
ronment can be kept intact by preventing non-
justified and unnecessary water releases. The 
economic criteria, i.e. the value of potential los-
ses, that could be avoided is another widely used 
objective. All that should be considered in the 
dynamical context and over a multi-year period.  

Finally, we describe the numerical methods, 
which have been applied to solve the problem. 
A potential application is generating a flood-
control strategy in the real-time control of eight 
water reservoirs in the Upper Vistula basin (the 
ninth reservoir is under construction) will also 
be presented. We will point out other areas in 
Europe and worldwide, which are endangered 
by floods in a similar manner and could be 
protected using the results here presented.  
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1. FORMULATION OF OPTIMIZATION 
PROBLEM

The  optimal  design  of  the  wind  turbine 
blade  requires  a  number  of  optimization 
criteria  to  be  taken  into  account,  as: 
minimization of generated blade vibrations; 
maximization  of  output  generated; 
minimization  of  blade  material  cost; 
stability  of  the  blade  structure;  fulfillment 
of appropriate strength requirements by the 
blade structure. 
The amplitude of generated vibrations of the 
wind turbine blade depends on its stiffness, 
which is a function of material density and 
thickness  of  its  components.  Therefore, 
when  the  vibration  minimization  criterion 
be  taken  into  account,  the  wind  turbine 
blade should be provided with the highest 
possible stiffness.
Such a formulation of optimization problem 
also  satisfies  the  criterion  of  generated 
output  maximization,  as  the  output  of  a 
wind turbine depends also on the optimum 
shape  of  blades,  i.e.  on  their  optimum 
geometrical features.
The  mass  and  fabrication  cost  of  a  blade 
depend  on  the  same  parameters  as  the 
amplitude  of  blade  vibrations.  If  the  cost 
minimization  criterion  were  considered, 
then the optimization task would have to be 
formulated  as  a  weight  minimization  task. 

However, in order to ensure stability of the 
structure, the weight should be maximized.
The  side  effect  of  such  approach  is 
possibility that eigenfrequencies of designed 
blade’s  will  be  the  same  as  resonance 
frequencies.
In  order  to  fulfill  strength  conditions  it  is 
necessary  to  optimize  blade’s  maximal 
displacement, having strain constraints.
It  is  important  that  optimizations  process 
gives  proper  dynamic  characteristics.  Such 
a characteristics  are  eigenfrequencies  and 
spectral function. When excluding dumping, 
dynamic  properties  of  mechanical  system 
are taken from inertial matrix and stiffness 
matrix,  which  should  be  modified 
in optimizations  process  using  proper 
objective function. The stiffness matrix can 
modify using dependence on blade’s static 
deflection.  Then  the  optimization  task 
should  be  formulated  as  the  minimization 
of the tip blade displacement task. Next step 
in optimizations process is mass reduction. 
The  best  way  it  would  be  to  take  mass 
reduction  and  minimizing  the  tip  blade’s 
displacement  into  account  simultaneously, 
having effect all criteria fulfilled.

The  problem of  multidisciplinary  discrete-
continuous optimization of the wind turbine 
blade was  formulated  as  a  single  criterion 
optimization task using the  ε  - limitations 
method:
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A)  formulating  objective  function  as 
a weighted  sum  of  most  important 
criteria (mass reduction and minimizing 
of the tip blade’s displacement);

B) choosing spectacular criteria as objective 
function, and formulating other criteria 
as limitations:
− Minimization of the blade mass;
− Minimization  of  the  tip  blade 

displacement.

Decision  design  variables  in  optimizations 
process are: shell thickness, web thickness, 
number  of  stiffening  ribs  and  their 
arrangement along blade span.

The other criteria: 
− fulfillment  of  appropriate  strength 

requirements by the blade structure,
− ensure local  and global  stability of the 

blade structure,
− the natural frequency of the blade must 

be  separated  from  the  harmonic 
vibration associated with rotor rotation,

− the natural frequency of the blade must 
be separated from the  frequency of the 
Karman’s vortex,

− ensure  minimal  material  cost  of  the 
blade,

were  expressed  in  the  form  of  inequality 
limitations.

4. CONCLUSIONS

Numerical calculations for all three variants 
of  optimization  processes  and  results 
of numerical  simulations  of  displacement 
vibration  signals  determined  for  chosen 
nodes of the blade, makes conclusions:
− Mass reduction criteria reduces slightly 

blade vibrations (26% mass reduction);
− The  tip  blade  displacement  criteria 

reduces  significantly  the  blade 
vibrations (about 30 %) making system 
more  stable  but  increases  significantly 
the blade mass (about 32%);

− Using  the  weighted  objective  function 
allows  slightly  reduce  the  tip  blade 
displacement,  increasing  slightly  it’s 
mass;

− Such  paretooptimal  solution  is  good 
compromise  between  reducing  the 

blade’s  mass  and  keeping  good 
stiffnesses parameters.
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1. LTGMP problem

Long-term electric power planning is a stochastic
optimization problem. It has to be solved for
new plant planning, fuel acquisition, and long-
and short-term operation. Another decision that
can be optimized is where to set the maintenance
periods of the thermal units.

The Bloom and Gallant formulation (1) with
the maximization of the profit (for a liberalized
market) is a quadratic programming model that
optimizes the expected generation of each unit
of the pool in the intervals in which the long
term period is split. The maintenance schedul-
ing model is a linear binary problem (4). The
union of both models results in a quadratic mixed
binary problem (QMBP):

minimize h′x +
1
2
x′Hx (1a)

subject to: Ax ≥ b (1b)

Cy = d (1c)

0 ≤ xi
j ≤ xi

jy
i
j ∀ i, j (1d)

yi
j ∈ {0, 1} ∀ i, j (1e)

where constraints (1b) are part of the generation
planning model (with continuous variables) and
constraints (1c) models the maintenance sched-
ule (with binary variables). The constraints on
the upper bound (1d) links the two models. The
subindex j indicates the unit and the supraindex
i indicates the interval.

2. LTGMP solution approach

We solve problem (1) using some global opti-
mization methods together with a specialized in-
terior point technique.

Therefore, problem (1) is transformed into the
continuous equivalent programming problem

minimize h′x +
1
2
x′Hx− λy(y − 1) (2a)

subject to: Ax ≥ b (2b)

Cy = d (2c)

0 ≤ xi
j ≤ xi

jy
i
j ∀ i, j (2d)

0 ≤ yi
j ≤ 1 ∀ i, j (2e)

by using the non-convex constraint

yi
j(1− yi

j) = 0 ∀ i, j,

with λ ≥ 0.
For a suitable given values of λ := λ∗ the

global optimal solution of both problems, (1) and
(2), are the same.

The objective function (2a) is a difference of
two convex functions. By using global optimiza-
tion techniques (2; 3) we can transform problem
(2) into an equivalent convex minimization prob-
lem with a reverse convex constraint:

minimize h′x +
1
2
x′Hx− t (3a)

subject to: Ax ≥ b (3b)

Cy = d (3c)

t− λy(y − 1) ≥ 0 (3d)

0 ≤ xi
j ≤ xi

jy
i
j ∀ i, j (3e)

0 ≤ yi
j ≤ 1 ∀ i, j (3f)

The new problem introduces a new variable, t,
and one quadratic reverse convex constraint (3d).
Notice that problem (2) and (3) are equivalents
for any nonnegative value of λ, but the problems
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(1), (2) and (3) are equivalent only for a suitable
λ := λ∗.

By using problem (3) a sequence of program-
ming problems are generated in order to obtain
a good approximation to λ∗, and therefore, to
the optimal solution of the original problem (1).
Each new problem updates the λ value and adds
linear constraints that limit the feasible domain.

Each generated problem is initialized with
warm-start techniques and solved with interior
point methods.

In the presentation the main parts of the model
and the relevant details of the implementation
will be further developed. Application to the so-
lution of realistic cases of the Spanish electricity
system will be presented.
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