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1. MOVING DOMAIN

The Courant metric in shape analysis (16) is ex-

tended here to classes of non smooth subsets in

D. The intrinsic tube analysis which is evoked

here is developped in (25), (24). The character-

istic function of Q is ζ ∈ L∞(I × D) verifying

ζ = ζ2 and ζ(t) = χΩt
where the measurable

set Ωt is defined in D up to a zero measure sub-

set. That theory can be extended to boundaries

with the approach of (2). In the second part we

adopt the eulerian modeling (5; 16; 8; 11) which

has been extended to non smooth vector fields in

(17; 25; 24; 8)... Making use of the transverse

field approach (8; 4; 18) we derive the euler

equation for the geodesic-tube which has been

presented in several image anlysis conferences

(”Shape Space” IMA , march 06, MIA06 Paris,

Obergurgl ...) with application developed with L.

Blanchard (26). The technic is inspired from (7).

Following (17), (23), we consider tubes which

are continuous with respect to the the L1(D)

topology and with time integrable perimeter, then

we introduce the set of characteristic functions

PD = { Ω ⊂ D, χΩ ∈ BV (D) }

and with

Hc = C0([0, 1], L1(D, {0, 1}))∩L1( 0, 1, BV (D) )

Associated with any subset Ω0 ∈ PD , the fam-

ily

OΩ0
= { Ω ∈ PD s.t.

∃ζ ∈ Hc, s.t. , ζ(0) = χΩ0
, ζ(1) = χΩ }

Associated with any two sets Ωi ∈ OΩ0
, the non

empty set of connecting tubes is :

T (Ω1, Ω2) = {ζ ∈ Hc, ζ(0) = χΩ1
,

ζ(1) = χΩ2
}

The set of jump lines of ζ(t) ∈ BV (D) is de-

noted by Γt. we consider the N +1 dimensional

perimeter

PI×D(Q) = ||∇t,xζ||M1(I×D)

=

∫ 1

0

∫

Γt

√

1 + v2 dΓt dt ≤

∫ 1

0
PD(Ωt) dt

+

∫ 1

0

∫

Γt

|v(t)| dΓt dt (in smooth case)

Consider also the fact that

<
∂

∂t
ζ, g >M(I×D)×C0

comp(I×D)

=

∫ 1

0

∫

Γt

v g dΓt dt =

∫ 1

0

∫

Ωt

div(g V )dxdt

As

∫ 1

0

∫

Γt

|v| dΓt dt = ||
∂

∂t
ζ||M1(I×D),

PD(Ωt) = ||∇xζ(t)||M1(D,RN )

Then we have :

||∇t,xζ||M1(I×D) ≤ ||
∂

∂t
ζ||M1(I×D)

+

∫ 1

0
||∇xζ(t)||M1(D,RN ) dt (1)

We shall consider the weak closure of such

smooth tubes ζ and verify that the estimate 1

still hold true on the closure:

Proposition 1.1 let ζn be a sequence of smooth

tubes such that

||
∂

∂t
ζn||M1(I×D)

+

∫ 1

0
||∇xζn(t)||M1(D,RN ) dt ≤ M (2)



Then there exists a subsequence ( still denoted ζn

) and ζ such that ζn → ζ stongly in L1(I × D)

( so that ζ = ζ2 ) and we have :

||∇t,xζ||M1(I×D) ≤ lim inf ||
∂

∂t
ζn||M1(I×D)

+

∫ 1

0
||∇xζn(t)||M1(D,RN ) dt (3)

Corollary 1.2 Let ζ ∈ L1(I, BV (D)) ∩

W 1,1(I, M1(D)) then ζ ∈ C0(I, L1(D)) and

a.e. t ∈ I, ζ(t) = χΩt
with PD(Ωt) < ∞ and

t → PD(Ωt) is l.s.c.

The weak closures Hc,∗
p and Hc,∗

θ of Hk :

Hc,∗
p = {ζ = ζ2 ∈ Hc ∩H∗, s.t.

, ∃ζn ∈ Hk, ζn → ζ in L1(I × D) ,

∇t,xζn → ∇t,xζ (wealky in )M1(I × D),

with
∂

∂t
(ζn−ζ) → 0 weakly in LP (I, M1(D)) }

Hc,∗
θ = {ζ = ζ2 ∈ Hc ∩H∗, s.t.

∃ζn ∈ Hk, ζn → ζ in L1(I × D) ,

∇t,xζn → ∇t,xζ (wealky in )M1(I × D),

with a.e.t ∈ I, ||
∂

∂t
ζn(t)||M1(D) ≤ θ(t) }

2. A COMPLETE QUASI-METRIC SPACE

Hc,∗
p := { ζ ∈ Hc ∩ W 1,1(I, M1(D)),

∂

∂t
ζ ∈ Lp(I, M1(D)) } (4)

when the moving boundary is smooth :

||
∂

∂t
ζ||L1(I,M1(D,RN )) =

∫ 1

0
||v(t)||M1(∂Ωt)dt

We consider the variationnal problem

T c,∗
p (Ω1, Ω2) = { ζ ∈ T̄ (Ω1, Ω2) ∩Hc,∗

p } (5)

= { ζ ∈ Hc,∗
p s.t. ζ(0) = χΩ1

, ζ(1) = χΩ2
}

j = Inf{ζ∈T c,∗
p (Ω1,Ω2)} { ||

∂

∂t
ζ||L1(I,M1(D,RN ))

+ ||p||L1(I) } (6)

Proposition 2.1 Let p > 1, there exists (at least

one) tube ζ in T c,∗
p (Ω1, Ω2) ⊂ Hc,∗

p verifying the

minimum in the variational problems 6

The positive number j cannot be zero, j > 0, so

that j fails to be a distance on the family O∗
Ω0,p

= {Ω s.t.∃ ζ ∈ Hc,∗
p , χΩ = ζ(1), ζ(0) = χΩ0

}

Incorporate the perimeter integral as a constraint

in the family:

for given M > 0 consider O∗,PM

Ω0,p

= { Ω ∈ O∗
Ω0,p s.t. χΩ = ζ(1), ζ ∈ T c,∗(Ω0, Ω),

∫ 1

0
||∇ζ(t)||M1(D) dt ≤ M }

Notice that for two element Ωi ∈ O∗,pM
p there

exists connecting tubes verifying the perimeter

constraint:

Lemma 2.2 Let Ωi ∈ O∗
Ω0,p, i = 1, 2 . Then the

set T̄ (Ω1, Ω2) ∩ O∗
Ω0,p is non empty

Theorem 2.3 Let M > ||∇χΩ0
||M1(D,RN ).Let

p = 1, equipped with δ̄ the family O∗,pM ⊂ PD

is a metric space.

Let p > 1, equipped with δ̄ the family

O∗,pM ⊂ PD is a complete quasi-metric space,

in the sense that the triangle inequality is re-

placed by the following one :

δ̄p(Ω1, Ω3) ≤ 2p−1 { δ̄p(Ω1, Ω2) + δ̄p(Ω2, Ω3) }

(7)

In a full paper (27) we discuss the possibility to

introduce the curvature term p′ in the metric .

3. FULLY EULERIAN METRIC SPACE

As soon as the speed vector field V verifies some

BV properties (V ∈ L2(I, BV (D)N )) (24; 15),

there is a unique tube associated to V , then we do

have an application V → ζV and with such reg-

ularity on V we can revisit the complete metric

d being completely delivered of the non differ-

ential perimeter and curature terms that we were

obliged to introduce in order to apply the com-

pacity theorems. From the tube analysis we con-

sider several interesting choices for the spacial

regularity of the speed vector field (together with

its divergence field). Let

E1,1 = {V ∈ L1(I × D, RN ),

divV ∈ L1(D), V.nD, W−1.1(∂D },

and let E be by closed subspace in BV (D) ∩

E1,1 such that any element V ∈ E verifies the



required assumptions. A first example is, when

working with prescribed volume for the moving

domain,

E0 = { V ∈ BV (D, RN ) ∩ E1,1,

s.t. divV = 0 a.e. (t, x) ∈ I × D }

V be a free divergence vector field with divV =

0, , V ∈ L1(I, E0)), where E = BV (D, RN )

or any closed subspace (for example E = {V ∈

H1
0 (D, RN ), s.t. divV = 0 } ) . An obvious

metric is to consider the set

V(Ω1, Ω2) = {V ∈ E1,1 s.t. V, divV ∈ Lp(I, E0),

s.t. ζ0 = χΩ1
, ζ(1) = χΩ2

}

δE0
(Ω1, Ω2) = InfV ∈V(Ω1,Ω2)

∫ 1

0
||V (t)||E0

dt

(8)

As V is divergence free the previous bounded-

ness assumption on the divergence are verified

and to each V a tube ζV is associated trough the

convection. Then we get the

Proposition 3.1 Let E be any subspace of

BV (D, RN )∩E1,1 such that any element V sat-

isfies assumptions of theorem 2,12 of (25), for

example E = E0 . Then equipped with δE the

family OE
Ω0

is metric space.

p > 1, dE0
(Ω1, Ω2) = InfV ∈V(Ω1,Ω2) ||V ||Lp(I,E0)

+ ||
∂

∂t
V ||L1(I,M1(D,RN ) (9)

Theorem 3.2 Let E be any subspace of

BV (D, RN ) ∩ E1,1, such that any element V

whose divergence satisfies assumptions of theo-

rem 2,12 of (25). Then equipped with dE the

family OE
Ω0

is a complete quasi- metric space.

3.1. Geodesic characterizarion via transverse

field Z

That metric can be improved as a complete

metric by adding the perimeter terms . Then

the transverse tube perturbation will applies.

In that setting we are concerned with vector

fileds Z(s, t, x) ∈ RN such that Z(s, 0, x) =

Z(s, 1, x) = 0 so that the extrimities of the per-

tubed tube are preserved. The previous study for

the transverse field implies that for given such a

vector filed Z, with divxZ(s, t, x) = 0 we get

the admissible perturbation of the field V in the

following form V + sW (s, t, x) with

W (s, t, x) =
∂

∂t
Z(s, t, x) + [Z, V ]

more precisely define the Lipschitz-continuous

connecting set

V1,∞(Ω1, Ω2) = { V ∈ L1(I, W 1,∞

∩E1,1, s.t. ζV ∈ T̄ (Ω1, Ω2) }

And the set of smooth transverse vector fields:

Z = { Z(t, x) ∈ C∞
comp(I × D, RN ) }

( Notice that such Z verifies Z(0, .) = Z(1, .) =

0 on D )

Proposition 3.3 Let V ∈ V(Ω1, Ω2) and

Z(t, x) ∈ Z . The Transformation

T = Ts(Z)oTt(V ) maps Ωt(V ) onto Ωs
t :=

Ts(Z)(Ωt(V )) so that

∀s, ∀Z, V s(t, x) =
∂

∂t
T o T −1

= (
∂

∂t
Ts(Z(t))+DTs(Z(t)).V (t) )oTs(Z(t))−1

∈ V1,∞(Ω1, Ω2)

Lemma 3.4

∂

∂s
V s(t, x)|s=0 =

∂

∂t
Z(t)+ [Z(t), V (t)] (10)

Corollary 3.5 Consider a functional J (V ) =

j(ζV ) and let V̄ be a minimizing element of J

on V(Ω1, Ω2) then we have

∀Z ∈ Z,
∂

∂s
J (V̄ s)s=0

= J ′(V̄ ; (
∂

∂s
V s)s=0)

= J ′(V̄ ;
∂

∂t
Z(t) + [Z(t), V (t)] ) ≥ 0 (11)

That variational principle extends to vector field

V ∈ E for which the flow mapping Tt(V ) is

poorly defined. The element ζV ∈ Hc is uniquely

defined. For any Z ∈ Z the perturbed ζs
V :=

ζV oTs(Z)−1 ∈ T̄ (Ω1, Ω2) on the other hand the

following result is easily verified



Proposition 3.6 ζs
V = ζV s with

V s(t, .) := −DT−1
s (−Z(t)).(V (t)oTs(Z(t))−1)

−
∂

∂t
Ts(−Z(t)) )

In other words:

∂

∂t
ζ + ∇ζ.V = 0 implies

∂

∂t
(ζoTs(Z(t))−1) +∇(ζoTs(Z(t))−1).V s = 0

It can also be verified that the expression 10

for the derivative of the field still holds true

so that the variational principle (11) is valid for

any functional J minimized over the lipschitzian

connecting family V1,∞(Ω1, Ω2). And more gen-

erally, without assuming V in E we have :

Proposition 3.7 Let (ζ, V ) ∈ T p,q(Ω1, Ω2), then

for all s > 0 and Z ∈ Z we have :

(ζoTs(Z)−1, V s) ∈ T p,q(Ω1, Ω2)

In order to get a differentiable metric we could

consider

d̃(Ω1, Ω2) = InfV ∈V(Ω1,Ω2)

∫ 1

0
( ||V (t)||H1

0
∩E0

+ ||
∂

∂t
V ||L2(D) ) dt

equipped with d̃, OΩ0
would be complete met-

ric space but d̃ fails to be a metric because of

the triangle axiom The advantage is that now the

associated functional is differentiable with repect

to V then we can apply the previous variational

principle with transverse vector field Z. Let V̄ be

a minimizer in V(Ω1, Ω2) for d̃(Ω1, Ω2). Then

∀Z ∈ Z we have

∫ 1

0
{ ||V (t)||−1 < V (t), Zt + [Z, V ] >

+|V ′(t)|−1 ((V ′(t) (Zt + Z, V )′ )) }dt = 0

Where <, > is the H1
0 (D, RN ) inner product

while ((, )) is the L2(D, RN ) one. In order to

recover a differentiable complete metric we in-

troduce again the constraint on the perimeter as

in the begining and set

δH1(Ω1, Ω2) = InfV ∈V(Ω1,Ω2)

∫ 1

0
||V (t)||H1

0
∩E0

dt (12)

The optimality condition is :∀Z ∈ Z

s.t.

∫ 1

0

∫

Γt

H(t) < Z(t), nt > dΓt dt = 0,

∫ 1

0
||V (t)||−1 < V (t), Zt + [Z, V ] > dt = 0

4. QUASI-METRIC BY LEVEL SET FOR-

MULATION FOR APPLICATIONS

Let p > 1 and Ωi, i = 1, 2 be two arbitrary

mesurable subsets in D. Let

K(Ω1, Ω2) = {φ ∈ L2(I, H1(D))∩W 1,1(I, L2(D)),

∂

∂t
φ ∈ Lp(I, L2(D)),

Ω1 = {Φ(0, .) > 0}, Ω2 = {Φ(1, .) > 0 }

Notice that K(Ω1, Ω2) ⊂ C0(Ī , L2(D)), we set

dLS,p = (Ω1, Ω2) := Inf{φ∈K(Ω1,Ω2)}

∫ 1

0
(α ||φ(t)||2H1(D) + ||

∂

∂t
φ(t)||p

L2(D)
) dt

Theorem 4.1 Let 1 < p ≤ 2, equipped with

dLS,p the family of mesurable subsets in D is

a complete quasi-metric space.

5. EULER EQUATION FOR GEODESICS

∃c(t), P s.t.
∂

∂t
(||V (t)||p−2 V (t))

+ ||V (t)||p−2 ( DV (t).V + D∗V.V (t) )

= ∇P + c χΓt
divΓt

(nt) nt.

That is,

(p − 2)||V ||p−4((V,
∂

∂t
V ))V

+ ||V (t)||p−2 (
∂

∂t
V + DV (t).V + D∗V.V (t) )

= c χΓt
divΓt

(nt) nt, (13)

which can be written as ( with the notations V̄ =

||V ||−1 V , Π = P − 1/2|V |2 ) :

divV = 0,

∂

∂t
V + (p − 2)((

∂

∂t
V, V̄ )) V̄

= DV.V = ∇Π+c(t)||V ||2−p χΓt
divΓt

(nt) nt

(14)
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