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1. OPTIMAL CONTROL PROB-

LEMS WITH CONTROL AP-

PEARING LINEARLY

We study optimal control problems of the fol-

lowing form: determine a piecewise continuous

(measurable) control u : [0, tf ] → IRm and a

state trajectory x : [0, tf ] → IRn that minimize

the cost functional of Mayer type,

J(x, u, tf ) := g(x(tf ), tf ),

subject to the dynamics, boundary conditions and

control-state constraints

ẋ(t) = f(x(t), u(t), t), 0 ≤ t ≤ tf ,

ϕ(x(0), x(tf )) = 0,

C(x(t), u(t)) ≤ 0, 0 ≤ t ≤ tf .

The augmented Hamiltonian is given by

H(x, u, λ, t) = λf(x, u, t) + µC(x, u),

where λ ∈ IRn denotes the adjoint variable and

µ is the multiplier for the control-state constraint.

For this control problem, second–order suffi-

cient conditions, sensitivity analysis and real–

time control techniques have been extensively

studied in the literature under the assumption

that the strict Legendre condition Huu[t] ≥

cIm , c > 0, holds; c.f., e.g., Dontchev, Hager

[3], Malanowski, Maurer [7], Büskens, Maurer

[2], Maurer, Augustin [9].

The situation is different for optimal control

problems where all control components appear

linearly. In this case, the strict Legendre con-

ditions is violated. The dynamics then has the

form

ẋ(t) = f1(x(t), t) + f2(x(t))u(t),

where f1(x, t) is a n–vector and f2(x, t) is a

n × m–matrix, and the control constraints are

assumed to be simple box constraints

ui,min ≤ ui(t) ≤ ui,max , i = 1, ...,m.

The switching function is defined by

σ(x, λ, t) = λf2(x, t),

σ[t] = σ(x(t)), λ(t)), t) = (σ1[t], ..., σm[t]).

Then the optimal control which minimizes the

Hamiltonian is characterized by

ui(t) =

⎧⎨
⎩

ui,min, if σi[t] > 0

ui,max, if σi[t] < 0

singular, if σi[t] = 0

⎫⎬
⎭

for i = 1, ...,m. If the switching function σi[t]

has only isolated zeros in [0, tf ], then ui(t) is

called a bang–bang control component.

2. BANG–BANG CONTROL

Assume that every component ui(t) of the opti-

mal control is bang–bang and that there are only

finitely many switching times which are ordered

as 0 < t1 < ... < tk < ... < ts < tf . Such a

bang-bang control can be computed by solving an

induced optimization problem, where the switch-

ing times tk, (k = 1, ..., s) are taken as optimiza-

tion variables. It has been shown in Agrachev,

Stefani, Zezza [1] and Osmolovskii, Maurer [11–

13] that second order sufficient conditions (SSC)

hold for the bang-bang control problem provided

that SSC hold for the induced optimization prob-

lem and, moreover, the switching function satis-

fies the so–called strict bang–bang property. A

related type of sufficient condition has been de-

rived in Ledzewicz, Schättler [6].



An interesting byproduct of the optimization

approach is the fact that the well–known sen-

sitivity results for finite–dimensional optimiza-

tion problems apply to bang–bang control prob-

lems, since the strict bang–bang property is sta-

ble with respect to perturbations. Numerical

time–scaling techniques for verifying SSC and

computing parametric sensitivity derivatives have

been developed in Maurer et al. [9]. In this talk,

we present two practical examples illustrating the

numerical techniques and the sufficiency test:

time–optimal control of a van der Pol oscillator

[11] and control of a semiconductor laser [4].

3. SINGULAR CONTROL

For singular control problems, sufficient otpi-

mality conditions have been obtained only in

special cases, e.g., for totally singular controls.

Here, we concentrate on the case where the sin-

gular control can be obtained in feedback form

u = using(x, t). This property holds in many

practical examples. To compute a control that is

a combination of bang–bang and singular arcs,

we solve an induced optimization problem, where

switching times of bang–bang arcs and junction

times with singular arcs are optimized simultane-

ously. This numerical approach is illustrated on

three examples: (a) van der Pol oscillator [14] (b)

Goddard problem [8,14], (c) fedbatch fermenta-

tion problem [5,14].
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