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1. OPTIMAL CONTROL PROB-
LEMS WITH CONTROL AP-
PEARING LINEARLY

We study optimal control problems of the fol-
lowing form: determine a piecewise continuous
(measurable) control u : [0,t¢] — IR™ and a
state trajectory x : [0,t7] — JR™ that minimize
the cost functional of Mayer type,

J(33>u>tf) = g(x(tf)>tf)>

subject to the dynamics, boundary conditions and
control-state constraints

<0, 0Zt<ty.
The augmented Hamiltonian is given by
H(z,u, A\ t) = Af(z,u,t) + pC(x,u),

where A\ € IR" denotes the adjoint variable and
w is the multiplier for the control-state constraint.
For this control problem, second—order suffi-
cient conditions, sensitivity analysis and real—
time control techniques have been extensively
studied in the literature under the assumption
that the strict Legendre condition H,,[t] >
cl,,, c > 0, holds; c.f., e.g., Dontchev, Hager
[3], Malanowski, Maurer [7], Biiskens, Maurer
[2], Maurer, Augustin [9].

The situation is different for optimal control
problems where all control components appear
linearly. In this case, the strict Legendre con-
ditions is violated. The dynamics then has the
form

@(t) = fr(z(t),t) + f2(2())u(d),

where fi(z,t) is a n—vector and fy(z,t) is a
n X m-matrix, and the control constraints are
assumed to be simple box constraints

ui,min S ul(t) S ui,max, 1= 1, ey M

The switching function is defined by

o(x, A\ t) = Afa(x,t),

olt] = o(x(t), A()), t) = (o1[t], ..., om[t])-
Then the optimal control which minimizes the
Hamiltonian is characterized by
if o; [t] >0

Ui, max if O'Z'[t] <0
singular, if o;[t] =0

Ui min,

u;(t) =

for i = 1,...,m. If the switching function o;[{]
has only isolated zeros in [0,%f], then u;(t) is
called a bang—bang control component.

2. BANG-BANG CONTROL

Assume that every component u;(t) of the opti-
mal control is bang—bang and that there are only
finitely many switching times which are ordered
as 0 <t < ..<tp<..<ts <ty Sucha
bang-bang control can be computed by solving an
induced optimization problem, where the switch-
ing times ¢y, (k =1, ..., s) are taken as optimiza-
tion variables. It has been shown in Agrachev,
Stefani, Zezza [1] and Osmolovskii, Maurer [11-
13] that second order sufficient conditions (SSC)
hold for the bang-bang control problem provided
that SSC hold for the induced optimization prob-
lem and, moreover, the switching function satis-
fies the so—called strict bang—bang property. A
related type of sufficient condition has been de-
rived in Ledzewicz, Schittler [6].



An interesting byproduct of the optimization
approach is the fact that the well-known sen-
sitivity results for finite—dimensional optimiza-
tion problems apply to bang—bang control prob-
lems, since the strict bang—bang property is sta-
ble with respect to perturbations. Numerical
time—scaling techniques for verifying SSC and
computing parametric sensitivity derivatives have
been developed in Maurer et al. [9]. In this talk,
we present two practical examples illustrating the
numerical techniques and the sufficiency test:
time—optimal control of a van der Pol oscillator
[11] and control of a semiconductor laser [4].

3. SINGULAR CONTROL

For singular control problems, sufficient otpi-
mality conditions have been obtained only in
special cases, e.g., for fotally singular controls.
Here, we concentrate on the case where the sin-
gular control can be obtained in feedback form
U = Uging(x,t). This property holds in many
practical examples. To compute a control that is
a combination of bang-bang and singular arcs,
we solve an induced optimization problem, where
switching times of bang-bang arcs and junction
times with singular arcs are optimized simultane-
ously. This numerical approach is illustrated on
three examples: (a) van der Pol oscillator [14] (b)
Goddard problem [8,14], (c) fedbatch fermenta-
tion problem [5,14].
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