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Variational analysis has been recognized as a

rapidly growing and fruitful area in mathemat-

ics concerning mainly the study of optimization

and equilibrium problems, while also applying

perturbation ideas and variational principles to a

broad class of problems and situations that may

be not of a variational nature. It can be viewed

as a modern outgrowth of the classical calculus

of variations, optimal control theory, and mathe-

matical programming with the focus on perturba-

tion/approximation techniques, sensitivity issues,

and applications; see (1; 2; 3)

One of the most characteristic features of

modern variational analysis is the intrinsic pres-

ence of nonsmoothness, i.e., the necessity to

deal with nondifferentiable functions, sets with

nonsmooth boundaries, and set-valued mappings.

Nonsmoothness naturally enters not only through

initial data of optimization-related problems (par-

ticularly those with inequality and geometric con-

straints) but largely via variational principles and

other optimization, approximation, and perturba-

tion techniques applied to problems with even

smooth data. In fact, many fundamental ob-

jects frequently appearing in the framework of

variational analysis (e.g., the distance function,

value functions in optimization and control prob-

lems, maximum and minimum functions, solu-

tion maps to perturbed constraint and variational

systems, etc.) are inevitably of nonsmooth and/or

set-valued structures requiring the development

of new forms of analysis that involve generalized

differentiation.

It is important to emphasize that even the sim-

plest and historically earliest problems of optimal

control are intrinsically nonsmooth, in contrast

to the classical calculus of variations. This is

mainly due to pointwise constraints on control

functions that often take only discrete values as in

typical problems of automatic control, a primary

motivation for developing optimal control theory.

Optimal control has always been a major source

of inspiration as well as a fruitful territory for

applications of advanced methods of variational

analysis and generalized differentiation.

In this talk we discuss some new trends and

developments in variational analysis and its ap-

plications mostly based on the author’s recent

2-volume book (1; 2). Generalized differen-

tiation lies at the heart of variational analysis

and its applications. We systematically develop

a geometric dual-space approach to generalized

differentiation theory revolving around the ex-

tremal principle, which can be viewed as a local

variational counterpart of the classical convex

separation in nonconvex settings. This princi-

ple allows us to deal with nonconvex derivative-

like constructions for sets (normal cones), set-

valued mappings (coderivatives), and extended-

real-valued functions (subdifferentials). These

constructions are defined directly in dual spaces

and, being nonconvex-valued, cannot be gener-

ated by any derivative-like constructions in pri-

mal spaces (like tangent cones and directional

derivatives). Nevertheless, our basic nonconvex

constructions enjoy comprehensive/full calculus,

which happens to be significantly better than

those available for their primal and/or convex-

valued counterparts. The developed generalized

differential calculus based on variational princi-

ples provides the key tools for various applica-

tions.

Observe to this end that dual objects (multi-

pliers, adjoint arcs, shadow prices, etc.) have al-

ways been at the center of variational theory and

applications used, in particular, for formulating

the main optimality conditions in the calculus of

variations, mathematical programming, optimal



control, and economic modeling. The usage of

variations of optimal solutions in primal spaces

can be considered just as a convenient tool for

deriving necessary optimality conditions. There

are no essential restrictions in such a “primal” ap-

proach in smooth and convex frameworks, since

primal and dual derivative-like constructions are

equivalent for these classical settings. It is not

the case any more in the framework of mod-

ern variational analysis, where even nonconvex

primal space local approximations (e.g., tangent

cones) inevitably yield, under duality, convex

sets of normals and subgradients. This convex-

ity of dual objects leads to significant restrictions

for the theory and applications. Moreover, there

are many situations particularly identified in this

book, where primal space approximations simply

cannot be used for variational analysis, while the

employment of dual space constructions provides

comprehensive results.

In this talk we pay the main attention to dis-

cussions of the basic constructions of general-

ized differentiation in variational analysis and

their applications to problems of nonsmooth

constrained optimization and optimal control.

We present complete characterizations of Lips-

chitzian stability and metric regularity of con-

straint and variational systems and their appli-

cations to sensitivity analysis with respect to

perturbations. Then we discuss necessary op-

timality conditions for some remarkable classes

of optimization problems including nondiffer-

entiable programming with functional and geo-

metric constraints and rather new while well-

recognized classes of mathematical programs and

multiobjective optimization problems with the

so-called equilibrium constraints, which closely

relate to problems of bilevel programming par-

ticularly considered in the talk. Finally, we con-

sider optimal control systems governed by evolu-

tion/differential inclusions and present new nec-

essary optimality conditions for them in gener-

alized Euler-Lagrange and Hamiltonian forms.

Our approach to optimal control of systems with

continuous-time dynamics is based of discrete

approximations, which provides efficient tools

of analysis from both numerical and qualitative

viewpoints. It time permits, we discuss particu-

lar applications of the results obtained to optimal

control systems with continuous-time dynamics

described by ordinary differential, functional dif-

ferential, and partial differential equations.
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